Therapeutic Restriction of the Fanconi Anemia Pathway to Limit Replication-Stress–Driven Genome Catastrophes in Hutchinson–Gilford Progeria Syndrome (HGPS)
DOI:
https://doi.org/10.5281/zenodo.18149175Keywords:
Hutchinson–Gilford Progeria Syndrome (HGPS), progerin, replication stress, micronuclei, chromothripsis, Fanconi anemia pathway, SLX4–XPF, MUS81Abstract
Hutchinson–Gilford Progeria Syndrome (HGPS) arises from a dominant LMNA mutation that produces progerin, a toxic lamin A variant. Progerin undermines nuclear architecture and perturbs DNA replication, provoking chronic replication stress, micronucleus formation, and persistent DNA damage that drives p53-dependent senescence. Recent mechanistic work shows that the Fanconi anemia (FA) pathway— canonically protective at stalled replication forks— can, under specific conditions, induce large-scale nucleolytic cleavage that primes missegregated chromosomes for chromothripsis. This duality suggests a novel therapeutic approach for HGPS: conditional, transient restriction of FA-dependent nuclease activity at mitosis, preventing catastrophic chromosomal shattering while preserving sufficient fork protection during S phase. This paper synthesizes current cell and mouse evidence, evaluates risks by comparison to Fanconi anemia models, and proposes an experimentally tractable therapeutic strategy with an in-depth in vitro and in vivo testing roadmap.
References
Del Campo, L., Sánchez-López, A., Salaices, M., von Kleeck, R. A., Expósito, E., González-Gómez, C., Cussó, L., Guzmán-Martínez, G., Ruiz-Cabello, J., Desco, M., Assoian, R. K., Briones, A. M., & Andrés, V. (2019). Vascular smooth muscle cell-specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 18(3), e12936.
Engel, J. L., Zhang, X., Wu, M., Wang, Y., Espejo Valle-Inclán, J., Hu, Q., Woldehawariat, K. S., Sanders, M. A., Smogorzewska, A., Chen, J., Cortés-Ciriano, I., Lo, R. S., & Ly, P. (2024). The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell, 187(21), 6055–6070.e22.
Hamczyk, M. R., & Andrés, V. (2019). Vascular smooth muscle cell loss underpins the accelerated atherosclerosis in Hutchinson–Gilford progeria syndrome. Nucleus, 10(1), 28–34.
Kneissig, M., Keuper, K., de Pagter, M. S., van Roosmalen, M. J., Martin, J., Otto, H., Passerini, V., Campos Sparr, A., Renkens, I., Kropveld, F., Vasudevan, A., Sheltzer, J. M., Kloosterman, W. P., & Storchová, Z. (2019). Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. eLife, 8, e50292.
Koblan, L. W., Erdos, M. R., Wilson, C., Cabral, W. A., Levy, J. M., Xiong, Z.-M., Tavarez, U. L., Davison, L. M., Gete, Y. G., Mao, X., Newby, G. A., Doherty, S. P., Narisu, N., Sheng, Q., Krilow, C., Lin, C. Y., Gordon, L. B., Cao, K., Collins, F. S., … Liu, D. R. (2021). In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 589(7843), 608–614.
Kreienkamp, R., Graziano, S., Coll-Bonfill, N., Bedia-Diaz, G., Cybulla, E., Vindigni, A., Dorsett, D., Kubben, N., Batista, L. F. Z., & Gonzalo, S. (2018). A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Reports, 22(8), 2006–2015.
Repczynska, A., Ciastek, B., & Haus, O. (2024). New insights into the Fanconi anemia pathogenesis: A crosstalk between inflammation and oxidative stress. International Journal of Molecular Sciences, 25(21), 11619.
Wheaton, K., Campuzano, D., Ma, W., Sheinis, M., Ho, B., Brown, G. W., & Benchimol, S. (2017). Progerin-induced replication stress facilitates premature senescence in Hutchinson–Gilford progeria syndrome. Molecular and Cellular Biology, 37(14), e00659-16.
Zhang, C.-Z., Spektor, A., Cornils, H., Francis, J. M., Jackson, E. K., Liu, S., Meyerson, M., & Pellman, D. (2015). Chromothripsis from DNA damage in micronuclei. Nature, 522(7555), 179–184.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jiayu Chen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
