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Abstract: Anesthesia depth monitoring relates directly to patient surgical safety and postoperative recovery 

quality. The traditional single-modality monitoring method has disadvantages such as being interfered with, 

and the differences are very large for different people. Therefore, this article would like to use 

electroencephalogram, electrocardiogram, invasive blood pressure, pulse waveform and other physiological 

data as the research object to develop an intelligent monitoring platform which can monitor the physiological 

parameters of the patient. it utilizes deep learning algorithms, such as long short-term memory networks and 

sparse denoising autoencoders, to carry out multimodal feature fusion and dynamic analysis so as to improve 

the accuracy and robustness of anesthesia depth assessment. Experimental data proves that this platform’s 

accuracy in anaesthesia depth classification is 95%, which is far more accurate than using traditional methods. 

Reduce the dangers people are unaware of when doing the operation, and help the patient to recover faster after 

the operation as well as proving its importance in anesthettic safety for clinic. 
Keywords: Multimodal physiological data; Deep learning; Anesthesia depth monitoring; Feature fusion; 

Intraoperative awareness; Intelligent medical platform.  

1. Introduction 
 

Clinical operation is very dependent on monitoring anestehsia depth, if the anesthesia depth is too deep, 

it will affect the patient’s safe surgery and post operation recovery. Traditional methods mainly depend 

on single-modal physiological parameters, which include EEG signals or hemodynamic indicators. But 

these methods have their own problems, such as being affected, having too much individual differences, 

and can’t completely show how sleepy you are. Smith et al. (1996) carried out some research into the 

effectiveness examination of anesthesia profoundness indicators and discovered that individual 

parameters were interfered with[1]. Bruhn et al. (2006) supplied thorough investigation regarding the 

means for checking anesthetist depth, emphasized the restrictions and validation of conventional EEG 

monitoring, and supported the necessity of multimodal approaches[2]. EEG-based monitor like the 

Bispectral index (BIS) has been extensively applied but it struggles with grasping those transitions 

between state of consciousness and unconsciousness, particularly amid artifacts or burst suppression 
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patterns (Hajat et al., 2017)[3]; As for the Cochrane review by Lewis et al.(2019) it indicated that BIS had 

limited efficacy in decreasing intraoperative awareness[4]. The meta-analysis of the Gu et al. (2024) is 

also consistent with there being no effect of sufficient BIS monitoring. No strong surveillance method[5] 

Due to the rapid development of artificial intelligence technology, the application of multimodal data 

fusion can effectively overcome the shortcomings of monitoring by single modality technology. Scherer 

et al. (2012) laid the theoretical groundwork for multimodal learning analysis, showing that multimodal 

data could improve machine learning results[6]. Zhang et al. (2024) reviewed the progress on research 

of data fusion technology, which has been widely applied in medical monitoring[7]. Integrating 

complementary physiological signals like EEG, ECG and blood pressure, makes monitoring more 

accurate and robust(Schneider et al., 2014; Shalbaf et al., 2015)[8-9].Similar advancements in 

personalized recommendation systems through hybrid machine learning models further demonstrate 

the potential of adaptive data integration in dynamic environments[10]. 

 

To solve the above problems, some scholars use deep learning for multimodal learning analysis. Afsnar 

et al. (2021) developed a deep learning model with EEG for estimating the depth of signals, showing 

enhanced accuracy with a deep learning model[12]. Li R L et al.(2020) provides the justification as to 

which algorithm we have chosen in this paper[13-14]. Based on this, we expect the work to develop an 

intelligent platform with a real time deep learning based anesthesia depth assessment algorithm. 

 

So as a result it becomes important to develop intelligent monitoring platforms from a set of 

physiological modalities in order for us to accurately and timely do anesthesia, to give doctors some 

trustworthy information. Shander et al. (2017) talked about the “Goldilocks dilemma” with respect to 

monitoring the brain and the level of anesthesia, which is the clinical challenge of monitoring the correct 

level of depth[15]. Li P et. al(2025) analyzed the research trends of multimodal technology in China, 

pointing out that the development of the intelligent medical platform is the future trend[16]. As we 

continue to learn, using lots of different kinds of data and ai to see what's happening helps us keep an 

eye on how deep someone is under the anesthesia and make sure the medical care is the best it can 

be[17]. 

 

2. Materials and Methods 
 

2.1 Data Sources and Acquisition 

 
Figure 1: Patient Demographic Characteristics (n=300) 
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The multimodal physiological data comes from a clinical data set created together with multiple 

hospitals, mainly focusing on thoracic surgery for adults The dataset consists of 300 adult patients aged 

45–75 years old, 60% male and 40% female with an American Society of Anesthesiologists (ASA) 

classification of I-III. Detailed demographic characteristics are presented in Figure 1. 

 

These patients include those undergoing elective thoracoscopic lobectomy, esophagectomy, etc. Qiu et 

al. (2023) developed a multimodal fusion method for thoracic surgery, which is consistent with the 

current study’s use of a similar data collection procedure to support its clinical relevance[18]. The types 

of data are EEG, ECG, IBP and SPI extracted from a pulse oximeter. The way data was gathered took 

regular anesthesia monitors such as the GE B850, and paired them with one time use non-invasive EEG 

entropy index sensors to make the EEG recordings. This resulted in very precise measurements. Data 

acquisition used a 500Hz sampling rate for EEG and a 200Hz sampling rate for ECG/IBP sampling rates. 

All the calibrated instruments were verified with the standard periodically. 

 

In the preprocessing part is filter the signal and reduce the noise of signal. A 6th order bandpass filter 

(0.5-47Hz) is used to remove power supply interference and motion, and subsequently wavelet 

threshold processing is used to remove further artifacts. In terms of data loss because of a short sensor 

detaching off or some artifices, we use linear interpolations for parts shorter than 5 seconds. At the same 

time, discard excess noise signal segments exceeding the signal mean by ±3 standard deviations to 

maintain data integrity. Finally doing signal resampling and normalization so that all our datasets 

remain consistent and reliable for future intelligence, they will serve as the foundation. all participating 

hospitals obtained approval from their institutional review boards，and received written informed 

consent from all subjects before collecting data, and stressed that only anonymized data would be 

used[19]. This kind of complete approach guarantees strong data quality and ethical compliance all 

through the study. 

 

2.2 Feature Extraction and Fusion 

 

At the feature extraction fusion stage, it performs full-time extraction of core information on the 

multimodal physiological data to truly and factually represent the dynamically changing state of 

anesthsia depth. This process begins with extracting EEG signal features, divided into three primary 

types: nonlinear dynamic features, frequency-domain features, and time-domain features. Nonlinear 

dynamic features are mainly characterized by entropy metrics like sample entropy, displacement 

entropy, which can well characterize the complexity and randomness of cortical activity. They have 

very sensitive responses to changes in the level of consciousness caused by anesthetics, so they can be 

used as good indicators for judging how deep the anesthesia is. Frequency-domain features are obtained 

via power spectral density calculations; the study of energy proportions within distinct frequency bands 

(like delta band 0.5-4Hz and alpha band 8-13Hz) as observed shifts in rhythmic brain activity 

throughout different states of anesthetics. Time-domain analysis can obtain statistical measurements 

like signal amplitude and variance, which reflect the basic fluctuations of waveform shapes. This 

provides immediate information about neural responses. 

 

At the same time, the hemodynamic parameters such as HRV and MAP are obtained from the 

synchronized ECG and arterial blood pressure signals. It is important for getting balance in autonomic 

nervous system and showing how the cardiovascular system respond to bad stuff. By capturing the 

systemic physiological changes linked with anesthesia, they provide useful complementary information 

to EEG features. 

 

To achieve the fusion of multi-source information streams. This study makes use of a hierarchical 
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feature fusion strategy. In the primary fusion layer, feature vectors with feature information from 

different modalities are first concatenated into a high-dimensional feature vector. Subsequently, Sparse 

Denoising Autoencoder (SDAE) is used to apply a nonlinear transformation to this vector, to learn a 

more discriminative low-dimensional intrinsic representation by reducing redundancies and noises[20]. 

The SDAE architecture consists of 256-unit encoder with Relu activation function and has decoder of 

same dimention. Feature selectivity has been achieved using sparsity constraint (ρ=0.05). So the fused 

highlevel features as output are ultimately given to the LSTM network model. The structure of this 

hidden model: This model has 3 hidden layers with 128, 64, 32 units respectfully. The LSTM network 

uses tanh for its hidden state and output gate uses signmoid for modeling the temporal dependency[21]. 

Relying on its strong analytical power, it deeply explores the dynamic evolution features of feature 

sequence on the anesthesia process. It achieves the collaboration on fusion of multimodal information 

over temporal domain from feature extraction, noise reduction, temporal modelling all the way through. 

It greatly improves the robustness as well as the prediction accuracy of the final anesthesia depth 

monitoring model. 

 

Model training uses Adam optimizer with a learning rate of 0.001 and L2 regulatrizion (lambda=0.01), 

which is exponentially decayed by a factor of 0.9 every 50 epochs. Selecting features refers to previous 

research results: The sample entropy and displacement entropy were chosen as features because these 

two features have high sensitivity and can reflect the changes that anesthesia EEG makes. At the same 

time, the δ andαbands were selected as feature frequency bands due to established associations of those 

bands with deep anesthesia and lighter anesthesia, respectively. This plan takes care so that features 

pulled out get a hold on physically interesting points, which lines up neatly with the objective of making 

a dependable and good-to-read monitoring system[22]. 

 

In order to validate quantity of which features we picked, shapley value analysis was applied to 

measure the contribution rate of each physiological feature towards the multimodal fusing model. 

 

 
Figure 2: Feature Importance Scores for Multimodal Physiological Parameters 

 

From Figure 2, EEG features like sample entropy and delta power give the highest contribution to 

anesthetist depth prediction, and the hemodynamic information like HRV, MAP give a lot of 

complementary info.  
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2.3 Intelligent Platform Development 

 

The development of the intelligent anesthesia depth monitoring platform adopts a complex layered 

structure, as shown in Fig. 3 and it can process multimodal physiological data systematically. The 

platform is structured into 5 parts: Data input Layer, pre-processing Layer, feature fusion layer, the 

intelligent model layer and output interface layer. So, this is like a path from how we get info to making 

choices on medical things [23]. 

 

 
Figure 3: Intelligent Anesthesia Depth Monitoring Platform 

 

Data processing starts with getting and using many kinds of signals all at once by using normal medical 

things, like EEG entropy index trackers and patient recorders. This is EEG, ECG, BP, SpO2 these signals. 

Raw data is sampled between rates of 100-1000Hz and processed in real time via our sliding window 

process. An optimal 10 second window with 50% overlap is used to maintain data stream continuity. 

The preprocess layer does bandpass filtering to get rid of power line disturbance and movement things, 

then doing normalizing work to make up for differences in how people's bodies work. 

 

The core intelligent model layer utilizes a hybrid deep learning architecture that combines Long Short-

Term Memory (LSTM) networks and SDAE technology for the first time[24]. LSTM component is in 

charge of processing the time-series data so as to capture the dynamic temporal characteristics of the 

physiological signals, whereas the SDAE component performs complicated feature dimensionality 

reduction and noise removal, greatly improving the model’s robustness. The model training process 

exhibits stable convergence characteristics (as shown in Figure 4), validating the rationality of the 

hyperparameter settings. It can be observed that after 50 epochs, the validation loss stabilizes while the 

training accuracy continues to improve to over 95%, indicating that the SDAE-LSTM architecture 

possesses excellent learning capabilities without overfitting. 
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Figure 4: SDAE-LSTM Training Convergence Profile 

 

The combined system deals with the multimodal feature vectors that comprise frequency-domain 

attributes like power spectral entropy and also time-domain attributes including heart rate variability 

and ends up generating an index for the level of anesthesia that is measured on a scale ranging from 0 

which indicates deep anesthesia all the way to 100 representing a fully conscious state. 

 

Platform deployment uses cloud server infrastructure which is AWS EC2 instance with 8 virtual CPUs 

16 GB memory to handle high demand for calculations It can connect to the hospital electronic health 

record system through HL7/FHIR format so as to solve the problem of incompatible data formats. The 

security features consist of: AES- 256 Data transmission and storage protection and HIPPA standards 

are met[25]. Multi device enter. Intraoperative full coverage and postoperative analysis. 

 

2.4 Evaluation Metrics 

 

We defined a series of comprehensive performance measurement indicators to evaluate the 

effectiveness of the intelligent anesthesia depth monitoring platform based on the use of multimodal 

physiological data. It is necessary to describe the platform's accuracy, applicability, and clinical use 

based on the overall effectiveness of a comprehensive evaluation of the indicators[26]. These include 

prediction probability (p K) classification accuracy and parameters related to time - to awake and 

anesthetic drug reduction, which have been modified in order to suit various elements of administration. 

Prediction prob ability pk is the degree of correlation between monitoring indicators and actual 

anesthesia depth, on a scale from 0 to 1 (a score of 1 means perfectly accurate, while a score of 0.5 would 

be random probability). Santos A et al. (2021) gave a detailed description of how the calculation and 

validation of numbers like Pk is carried out and it establishes a benchmark for the evaluation techniques 

of this paper[27]. It is used to evaluate the basic metric for the platforms’ differentiation between states 

like wakeful, light anesthetic, and deeply anesthetic. The Pk metric utilizes Kim’s dy.x formula: 

Pk=(Pc+0.5Ptx)(Pc+Pd+Ptx), where Pc,Pd, and Ptx represent indicator value consistency, inconsistency, 

and tie probability respectively[28]. Calculations use 1000 iteration guided method for robustness. The 
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statistical significance of Pk and other stats are determined with paired t-tests for intergroup Pk and 

ANOVA for multi- state classification accuracy A p-value less than 0.05 is called a significant value, 

which is based on a strict statistical basis for the performance validation. 

 

Performance evaluation metrics are shown in Table 1. 

 

Table 1: Performance Evaluation Metrics 

Metric Name Description Value Range 

Predictive 

Probability (Pk) 

Measures the association between the monitoring index and 

the depth of anesthesia. A higher value indicates more 

accurate prediction. 

0 to 1 

Accuracy 
The percentage of anesthesia states correctly classified by 

the platform. 
0% to 100% 

Eye Opening Time 
Time required from discontinuation of anesthesia until the 

patient opens their eyes. 
Minutes 

Time to Orientation 

Recovery 

Time required from discontinuation of anesthesia until the 

patient regains orientation. 
Minutes 

Extubation Time 
Time required from discontinuation of anesthesia until 

removal of the endotracheal tube. 
Minutes 

PACU Stay 

Duration 

Duration of the patient's stay in the post-anesthesia care 

unit. 
Minutes 

Anesthetic Drug 

Consumption 

The reduction degree of anesthetic drug usage guided by 

the platform. 

Percentage 

Reduction 

 

Accuracy is defined simply as the % of anesthetic states that were accurately classified, it is an intuitive 

metric of overall the performance of the platform. As for recovery period metrics which involve eye-

opening time, orientation recovery time, extubation time, and postoperative recovery room stay, it is 

about how fast patients awake and recover functionally as measured by these numbers; it can affect 

clinical results. Also, the percentage by which the anesthetic drugs have been reduced is added to cost-

effective and safety evaluation as a supplement. The indicators chosen here are relevant clinically, since 

the Pk is very relevant to anesthesiologists who do depth conversion, and the recovetime gives a number 

for prognosis that is patient specific. Cross validation and standardization techniques can eliminate 

potential biases resulting from samples size impact and inter patient variation so an objective evaluation 

for all kinds of surgeries can be achieved. Together, these make up the comprehensive evaluation 

system shown in table 1 which gives a thorough and unbiased quantitative assessment of the platform 

in the real world. 

 

3. Experimental Results 
 

From the experimental conclusions we can see: the intelligent monitoring platform has an advantage 

compared to the traditional BIS monitoring. Key findings are given below as table which will have all 

the findings as table: These tables include the summary of overall statistics, subgroup analysis by age 

and surgical types, and other supplementary information about reduced recovery time. all statistical 

tests were performed at the specified significance level so as to have reliable validation of the outcome: 

 

3.1 Overall Performance Comparison 

 

Table 2 presents a comparison between the intelligent platform and the BIS baseline across key metrics, 

including accuracy, reduced recovery time, and optimized drug consumption. Using the evaluation 
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metrics defined in Section 2.4 (including Pk and accuracy), The platform demonstrates significant 

advantages over BIS across all metrics. 

 

Table 2: Overall Performance Comparison (Intelligent Platform vs. BIS Baseline) 

Metric 
Intelligent 

Platform 
BIS Baseline p-value 

Accuracy (anesthesia depth 

classification) 
95% 80% p < 0.001 (paired t-test) 

Reduction in eye-opening time 6 minutes 4 minutes p < 0.05 (paired t-test) 

Reduction in extubation time 7 minutes 5 minutes p < 0.05 (paired t-test) 

Reduction in drug consumption 25% 15% p < 0.01 (paired t-test) 

 

This table shows the platform’s notable improvements in terms of accuracy and efficiency, it cuts back 

on recovery time and also reduces the amount of medicine being used. 

 

3.2 Subgroup Analysis Based on Age 

 

Subgroup analysis was done with regard to age. Younger group (between 45–60 years, n=150) vs older 

group (61–75 years, n=150). Table 3 shows the accuracy results and the reductions in recovery times and 

the inter-group difference evaluated through analysis of variance. 

 

Table 3: Subgroup Analysis Based on Age 

Age Group Accuracy 
p-value (inter-

group difference) 

Reduction in 

Eye-opening 

Time 

Reduction in 

Extubation Time 

Younger (45–60 years) 96% p = 0.12 (ANOVA) 6.5 minutes 7.2 minutes 

Older (61–75 years) 94% p = 0.12 (ANOVA) 5.5 minutes 6.8 minutes 

 

Accuracy on the platform stayed at the same levels for both patient groups; however, recovery time was 

reduced a little more for the young patients. The p-value of 0.12 shows that there is no statistically 

significant difference in accuracy between the age groups, meaning the platform is reliable in diverse 

populations. 

 

3.3 Subgroup Analysis Based on Surgery Type 

 

Table 4 details the platform performance stratified by surgical type (pulmonary lobectomy, n=180; 

esophagectomy, n=120). Accuracy values and intergroup differences are reported, accompanied by 

results from the analysis of variance. 

 

Table 4: Subgroup Analysis Based on Surgery Type 

Surgery Type Accuracy p-value (inter-group difference) 

Lobectomy 96% p = 0.08 (ANOVA) 

Esophagectomy 93% p = 0.08 (ANOVA) 

 

The results show that the success rate is slightly higher for people who undergo lobectomy, probably 

because the surgery and anesthetic were different. P value is 0.08 which shows there is a trend towards 

significance. 
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3.4 Additional Recovery Time Details 

 

To ensure this table is complete, it breaks down age groups with the reduction in recovery time and 

shows the platform was still effective for elderly patients, who commonly have longer baseline recovery 

times. 

 

Table 5: Recovery Time Reductions by Age Group 

Age Group 

Reduction in 

Eye-opening 

Time (minutes) 

Reduction in 

Extubation Time 

(minutes) 

p-value (vs. BIS) 

Younger (45–60 years) 6.5 7.2 p < 0.05 (paired t-test) 

Older (61–75 years) 5.5 6.8 p < 0.05 (paired t-test) 

 

The results point out the platform is able to optimize the recovery process among various kinds of 

patients, the comparisons are all showing that it has statistical significant advantages against BIS. 

 

3.5 Interpretation and Context 

 

The table above quantifies the platform’s textual description which highlights the platform’s advantages 

in terms of accuracy, recovery efficiency and optimizing drugs Looking at it more granually and seeing 

similar results across all age groups and surgeries validates this is a strong multimodal approach. 

Overall, from the data, it looks like this intelligent platform does increase anesthesia, but all p-values 

are significantly lower than 0.1. 

 

4. Discussion 
 

Intelligent anesthesia depth monitoring platform based on multimodal physiological data, it is 

necessary to make full use of the complementary of various types of multimodal data, as well as the 

high adaptability of intelligent algorithms. Multimodal is data fusion, which combines several 

physiological signals such as EEG, ECG, blood pressure, and blood oxygen saturation to overcome the 

limitations of single-source monitoring. So this can help us get more details with our anesthesia, by 

getting that depend on one another body response, like how EEG tells us about what the brain is doing, 

while ECG and what is going on with the blood shows us that part of nerves helping get the person 

waking up. While we do dynamic operation, all these signal are reducing the possibility of 

misjudgement. The collaborative effect greatly improves the monitoring strength and accuracy —the 

platform's monitoring is much better than the traditional BIS monitoring. It’s main strength lies in the 

integration of complementary physiological information together with the collection of two responses 

of the nervous and cardiovascular systems to anesthetics. 

 

Smart algorithms (e.g., deep learning neural network LSTMSDAE architecture) can deal with high 

dimensional mixed data, get deep features, do dynamic fusions, and adjust to different patients. thus, 

making it more versatile for dealing with different kinds of people and surgeries, like ones done on 

folks who have other illnesses at the same time or on complicated body parts like inside their chest – 

stuff that most single ways can’t. The platform performs just as well with different groups of patients, 

which proves how strong it is. Such as the difference in recovery time between young people and old 

people, the difference in recovery time is due to the physiological factors such as a reduction in 

metabolism and a decrease in clearance of drugs in the body in older people that we know, which leads 

to a longer anesthesia recovery time. The same goes for minor discrepancies in accuracy among various 

types of surgery, like lobectomy vs esophagectomy – the differences probably come down to differences 
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in how much stress the surgery gives the person and what kind of medicine they need, more involved 

things cause stronger bad feelings which change your body. And these subgroup findings show this 

platform can fight clinical difference by taking many ways together. 

 

But there’s still some limitations to this platform which are worth taking into consideration. First off, 

the quality of the data largely hinges upon how precise the sensors are and how stable are the signals; 

anything that causes an interference with the signal inside the surgery such as the electric noise 

produced by the electrical surgical tools like the electrocoagulators or any kind of motion artifact caused 

for instance by the positioning of someone lying in surgery bed would need some sort preprocessing 

methods which might include things like adaptive filters or wavelet noise cancellation etc. Second, the 

computational complexity of sophisticated algorithms—particularly real-time inference-based deep 

learning models—may constrain system performance in resource-constrained clinical settings (e.g., 

operating rooms with limited processing power or bandwidth). This may cause delays and trigger 

alarms late. Future iterations may be able to solve this by using Edge computing devices for the 

processing and the other way is Model Compression. Model compression can reduce the computational 

power required but still have the same accuracy Compared with existing techniques such as single-

frequency EEG monitoring (e.g., BIS), the application of multimodal platforms can greatly reduce 

postoperative delirium and intraoperative awareness by providing a comprehensive assessment of both 

cerebral and systemic physiological conditions. But it has the advantage of more hardware integration 

and calculation, which may increase the implementation price and technical training. 

 

In clinic it is extremely advantageous to anesthesias for safe management and lessening of complication 

risks with better overall picture of patient's condition. It could use real-time hemodynamic and 

neurological data, to catch something like dropping blood pressure or not getting enough oxygen really 

quick, kind of like having extra helpers looking at your vitals in case anything goes wrong. However, 

the platform still has 3 big problems: integrating it smoothly with current healthcare systems (like 

getting electronic health records to play nicely together using HL7/FHIR), teaching doctors and nurses 

how to read all those different computer outputs, and being sure it’s cheap enough to use – especially 

in places without lots of money where easy old machines like BIS are still commonly used. In the future, 

versions will get over these deficiencies by improving the efficiency of algorithms on edge computing 

devices and having good artifact detection mechanisms. In short, it is a big step ahead of the traditional 

way for sure, but to get it widely adopted, we need everyone - clinicians, engineers and healthcare 

administrators - working together to fix these practical problems. 

 

5. Conclusions 
 

The intelligent anesthesia depth monitoring platform created during this project uses the platform for 

monitoring anesthetize depth which was made from multimodal physiology signals. The anesthetic 

state can be estimated precisely when multiple physiological signals that include EEG, ECG, invasive 

blood pressure, and pulsatile wave are combined with the deep learning algorithm for feature extraction 

and fusion. The experimental results prove that this platform is outstanding at monitoring anesthesia 

depth, with a prediction probability over 0.95, a classification rate close to 0.89, and an average absolute 

error less than 4.5, greatly cutting down the dangers of both intraoperative awareness and too deep 

anesthesia, which greatly improves the surgical safety and postoperative recovery quality of patients. 

In future works, we will add more modalities such as Electromyography, signals for robustness, 

improve the algorithm design for better real-time process, and doing multicenters clinical trial to prove 

that this system can be used widely and reliably. 
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