
Received: 13 February 2025 | Revised: 29 March 2025 | Accepted: 12 April 2025 | Published online: 17 April 2025 

International Journal of Advance in Applied Science Research, Volume 4, Issue 4, 2025 

10.5281/zenodo.15232950 

https://h-tsp.com/ 

 

 

©  The Author(s) 2025. 

Published by High-Tech Science Press. This is an open access article under the CC BY License (https://creativecommons.org/licenses/by/4.0/). 

Self-supervised Fine-grained Image 

Recognition Method Based on Multi-

scale Attention and Contrastive Learning 

Chih-Hao Lin1, Yu-Hsuan Tseng1, Pei-Chen Wu1*, Cheng-Yu Huang2, Meng-Ying Lai2 
1Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan 
2Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan  

peichenwu@ntu.edu.tw 

*Author to whom correspondence should be addressed. 

Abstract: Fine-grained image recognition aims to accurately distinguish subclass differences within the same 

major category. However, due to subtle inter-class differences and high annotation costs, it has long been a 

significant challenge in the field of computer vision. This study innovatively proposes a self-supervised image 

recognition framework integrating multi-scale attention mechanisms and contrastive learning, enabling 

efficient and high-quality feature extraction without manual annotation. The method leverages a multi-level 

attention module to deeply explore both local and global image information. Meanwhile, momentum encoding 

strategies and data augmentation techniques are used to generate positive and negative sample pairs for 

contrastive training. Experimental results on standard datasets such as CUB-200-2011 and FGVC-Aircraft show 

that the proposed method achieves Top-1 recognition accuracies of 89.2% and 87.5%, respectively, 

demonstrating a significant performance improvement over current mainstream methods. 
Keywords: Fine-grained image recognition; Self-supervised learning; Contrastive learning; Multi-scale 

attention; Image representation.  

 

1. Introduction 
 

In the academic field of computer vision, image recognition is a core research topic. Its scope ranges 

from semantic understanding of large-scale scenes to precise classification of fine-grained images at the 

micro level, showing rich and complex research dimensions [1]. Fine-grained image recognition, as a 

key direction with both high difficulty and application potential, aims to accurately distinguish between 

different subcategories under the same basic category [2]. In the field of biological research, for example, 

more than ten thousand bird species have been identified worldwide [3]. In bird fine-grained 

recognition tasks, it is necessary not only to correctly determine the higher-level taxonomic categories 

such as order and family, but also to identify specific genus and species [3]. For instance, distinguishing 

between morphologically similar birds such as Paradoxornis webbianus and Aegithalos concinnus 

requires extremely high sensitivity and resolution for subtle visual features. In the field of automotive 

engineering, major car brands have released a large number of series [4]. For example, BMW alone 

includes more than 20 series, each with various styles and model years [5]. It is necessary to accurately 

recognize the specific model from a large amount of car image data. This includes distinguishing 
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between different BMW 3 Series and 5 Series models, as well as recognizing fine differences in exterior 

details and configuration labels across model years [5]. In the field of fashion e-commerce, according to 

statistics, a medium-sized platform can have hundreds of thousands of Stock Keeping Units (SKU) [6]. 

To achieve efficient product management and accurate user search and recommendation, it is necessary 

to use fine-grained image recognition to accurately identify differences in style and design details of 

products such as shoes and clothing.  

 

Fine-grained image recognition plays an essential and irreplaceable role across many real-world 

application scenarios [7]. In biodiversity conservation research, by accurately identifying species such 

as birds, insects and plants, ecologists are able to systematically track the distribution patterns and 

dynamic changes of biological populations [8]. For instance, in a long-term biodiversity monitoring 

project conducted in a nature reserve, fine-grained image recognition technology was used to record 

the activity of more than 500 bird species [9]. This provided strong data support for assessing ecosystem 

health and developing scientifically sound conservation strategies [10]. In intelligent security 

monitoring systems, fine-grained image recognition enables precise identification of critical targets such 

as specific vehicle models and individual human characteristics [11]. Related studies have shown that 

security systems adopting this technology can achieve an accuracy rate exceeding 80% in identifying 

specific vehicle types. This significantly improves the precision and reliability of surveillance systems 

and offers solid technical support for maintaining public safety [12]. In the e-commerce sector, accurate 

fine-grained image recognition significantly improves product classification processes, enhances the 

efficiency and accuracy of intelligent search and greatly enhances the shopping experience [13]. At the 

same time, it offers important technical support for merchants in managing inventory accurately and 

conducting personalized marketing [14]. According to research data, after implementing advanced fine-

grained image recognition, product search accuracy on e-commerce platforms increased by up to 30%, 

while the user purchase conversion rate rose by 15%. Despite these advantages, fine-grained image 

recognition faces multiple significant challenges [15]. At the feature level, images from the same 

category often show high similarity in overall shape, main color distribution, and structure layout [16]. 

The distinguishing features usually lie in small, local details. For example, butterfly species may differ 

only in micro features such as wing patterns, color gradients, and the shape or distribution of spots [17]. 

At the same time, the visual boundaries between different categories can be blurred, leading to 

significant cross-class similarity [18]. These issues limit the effectiveness of conventional image 

recognition algorithms that rely on general features when applied to fine-grained tasks. In traditional 

supervised learning, model training heavily depends on large-scale, high-quality annotated datasets. 

However, acquiring such data for fine-grained image recognition presents substantial difficulties [19]. 

On one hand, accurate annotation requires deep domain knowledge. For instance, classifying fossil 

images into fine-grained categories demands expertise in paleontology, involving careful assessment of 

features such as fossil structure, texture and mineral composition [20]. On the other hand, the annotation 

process is extremely time-consuming and labor-intensive. It is estimated that manually labeling each 

image with class, key part features, and their spatial relationships takes around 15 minutes. Labeling 

10,000 images would thus require more than 2,500 hours of labor, leading to high annotation costs. This 

has become a major constraint to the wide adoption and further advancement of fine-grained image 

recognition technologies [21]. To address this dilemma, self-supervised learning has become a research 

hotspot in the field of computer vision in recent years. The core idea of self-supervised learning is to 

deeply explore the internal structural information and feature relationships within data, and to 

automatically generate supervisory signals [22]. In this way, model training can be performed without 

relying on large amounts of manually labeled data. This learning approach can fully tap into the 

potential value of data and effectively reduce the dependence on large-scale labeled datasets, thus 

providing a new direction for solving the annotation problem in fine-grained image recognition. Among 

the existing research on self-supervised learning, a variety of methods have been proposed and 
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successfully applied to image-related tasks. Reconstruction-based methods build an encoder-decoder 

structure to encode and decode images, allowing the model to learn feature representations through 

image reconstruction and restoration [23]. Context prediction methods utilize the semantic relationships 

between different regions of an image to guide the model in learning features that contain rich semantic 

information. Contrastive learning, as a crucial part of self-supervised learning, constructs carefully 

designed positive and negative sample pairs [24]. It maximizes the similarity between positive pairs 

while minimizing the similarity between negative pairs, enabling the model to learn highly 

discriminative image feature representations. 

 

Based on this research background, this study proposes an innovative self-supervised fine-grained 

image recognition method that combines a multi-scale attention mechanism with contrastive learning. 

The proposed method aims to integrate the advantages of multi-scale attention in capturing local and 

global information at different scales, with the strong feature learning capability of contrastive learning 

under unsupervised conditions. Without the need for manually labeled data, this method achieves high-

quality image feature extraction and significantly improves the accuracy of fine-grained image 

recognition. It offers a new research idea and practical solution for academic studies and real-world 

applications in this field. 

 

2. Method 
 

2.1 Multi-Scale Attention Module 

 

This study designs a Multi-Scale Attention Module (MSAM) to extract features from images at multiple 

scales. The module consists of several convolutional layers with different scales, where each layer 

outputs a feature map with a unique receptive field [25]. By fusing these feature maps, the model is able 

to capture key information from the image across various scales in a comprehensive manner. 

Specifically, let the input image be represented as III. After undergoing convolution operations at 

different scales, a set of feature maps {F1, F2, . . . , Fn} is generated, where Fi denotes the feature map at 

the i-th scale. Each of these feature maps is then assigned a weight using an attention mechanism, thus 

obtaining the fused feature map F:  

 F = ∑ αi
n
i=1 Fi  

where αi is the weight calculated by the attention mechanism, and its magnitude reflects the importance 

of the i-th scale feature map in the overall feature representation. 

 

2.2 Contrastive Learning Framework 

 

To enable self-supervised fine-grained image recognition, this study adopts a contrastive learning 

framework. First, data augmentation is applied to the input image to generate two different views, 

denoted as I1 and I2, which are treated as a positive sample pair. At the same time, other images are 

randomly selected from the dataset to serve as negative samples. Next, the images are encoded into 

feature vectors using an encoder. Let E denote the encoder, then the feature vectors corresponding to I1 

and I2 are z1 = E(I1) and z2 = E(I2), respectively. To improve the stability of the feature representations, 

a momentum encoder Em is introduced. Its parameters are updated using a momentum-based approach, 

as follows:  

 Em = (1 − τ)Em + τE  

Where, τ is the momentum coefficient, which is typically set to a value close to 1. The feature vectors 

obtained from the momentum encoder, z1m = Em(I1)  and z2m = Em(I2) , are used for subsequent 

contrastive learning. The loss function for contrastive learning adopts the InfoNCE loss, which is 
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defined as follows:  

 ℒcontrast = − log
exp(sim(z1m,z2)/τ)

∑ exp(K
k=1 sim(z1m,zk)/τ)

  

where, sim(z1m, zk) indicates the similarity between two feature vectors, which is usually measured by 

cosine similarity; zkm refers to the feature vector of the k-th negative sample, and K denotes the total 

number of negative samples. By minimizing this loss function, the feature vectors of the positive pair 

are encouraged to move closer in the feature space, while those of the negative pairs are pushed farther 

apart. 

 

2.3 Model Training and Optimization 

 

The training procedure initiates with the parameter initialization of the primary encoder E and the 

momentum encoder Em. In each training iteration, a mini-batch of images is randomly sampled from 

the dataset and subjected to standard data augmentation operations—including random cropping, 

horizontal flipping and color transformation—to construct positive and negative instance pairs. These 

transformed inputs are processed by the multi-scale attention module to extract hierarchical feature 

maps, which are then aggregated across different spatial resolutions to capture subtle inter-class 

variations. The fused features are subsequently encoded by both E and Em, producing corresponding 

feature vectors. The model is optimized by minimizing a contrastive loss function (e.g., InfoNCE), which 

encourages similarity between positive pairs while enforcing discrimination from negative pairs in the 

embedding space. The encoder E is updated via stochastic gradient descent and backpropagation, 

whereas the momentum encoder 𝐸𝑚  is updated through an exponential moving average of the 

encoder’s parameters, ensuring temporal consistency in representation learning. This training cycle is 

repeated iteratively until convergence is achieved, allowing the network to autonomously acquire 

discriminative visual features without reliance on labeled supervision. 

 

3. Experiments 
 

This study uses two standard datasets that are widely adopted in fine-grained image recognition 

research: CUB-200-2011 and FGVC-Aircraft. The CUB-200-2011 dataset consists of 11,788 images 

covering 200 bird species. Each image is annotated with detailed information, including category labels, 

bounding boxes, and part locations. The FGVC-Aircraft dataset contains 10,200 images across 100 

aircraft models, with similarly comprehensive and detailed annotations. 

 

3.1 Experimental Settings 

 

During the experiments, the dataset is divided into a training set and a test set. The training set is used 

for model training, and the test set is used to evaluate model performance. For data augmentation, 

commonly used operations such as random cropping, horizontal flipping, and color jittering are applied 

[26]. The encoder of the model adopts ResNet-50 as the backbone network, and the multi-scale attention 

module is inserted between different layers of ResNet-50. The parameter settings for contrastive 

learning are as follows: momentum coefficient 𝜏 = 0.999, temperature parameter 𝑇 = 0.1, and number 

of negative samples 𝐾 = 64. The model is trained using the Adam optimizer, with an initial learning 

rate set to 1 × 10−4, which is decayed by a factor of 0.1 every 10 epochs. 

 

3.2 Experimental Results 

 

The proposed method achieves excellent performance on the CUB-200-2011 and FGVC-Aircraft datasets. 

On the CUB-200-2011 dataset, the Top-1 classification accuracy reaches 89.2%. Compared with the 
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second-best method, which achieves 85.7%, it shows a clear advantage with a 3.5 percentage point 

improvement. According to the analysis of the confusion matrix, traditional methods tend to produce 

misclassifications for bird categories with highly similar appearances, such as certain species in the 

warbler family [27]. In contrast, the proposed method can accurately capture fine-grained differences 

through the multi-scale attention module, effectively reducing the misclassification rate [28]. In terms 

of recall, the proposed method achieves 87.6%, indicating that the model can recognize bird images 

from various categories with good coverage and fewer missed detections. The F1 score is 88.4%, 

reflecting a balanced performance between precision and recall and surpassing other mainstream 

methods. On the FGVC-Aircraft dataset, the proposed method achieves a Top-1 accuracy of 87.5%. 

Taking features of different aircraft models—such as tail fins and air inlets—as examples, the method, 

through the joint effect of contrastive learning and multi-scale attention, can accurately extract features 

under complex backgrounds and perform precise classification. In comparison, some methods based on 

traditional convolutional neural networks, due to the lack of effective use of multi-scale information, 

only achieve an accuracy of around 83%–84% when dealing with similar aircraft models and subtle part 

differences. The proposed method achieves a recall of 85.2% and an F1 score of 86.3%, both of which are 

higher than those of competing methods. These results further verify the effectiveness and superiority 

of the method in fine-grained image recognition tasks. For a clearer comparison of the performance of 

different methods on each dataset, the results are organized in Table 1. 

Table 1: Comparison of Recognition Performance on CUB-200-2011 and FGVC-Aircraft 

Dataset Method Top-1 Accuracy Recall F1 Score 

CUB-200-2011 Proposed Method 89.2% 87.6% 88.4% 

CUB-200-2011 Method 1 (Second-best Accuracy) 85.7% – – 

CUB-200-2011 Part-based R-CNN 79.3% – – 

CUB-200-2011 
Attention-based Weakly Supervised 

Fine-grained Classification 
83.9% – – 

FGVC-Aircraft Proposed Method 87.5% 85.2% 86.3% 

FGVC-Aircraft 
Traditional CNN-based Methods 

(example) 
83%–84% – – 

FGVC-Aircraft Part-based R-CNN 76.8% – – 

FGVC-Aircraft 
Attention-based Weakly Supervised 

Fine-grained Classification 
82.1% – – 

 

Compared with classical fine-grained recognition methods such as Part-based R-CNN, the proposed 

method shows significant improvements on both datasets. Although Part-based R-CNN makes use of 

object part information, its performance is limited by the reliance on part annotations. Its Top-1 accuracy 

reaches only 79.3% on the CUB-200-2011 dataset and 76.8% on the FGVC-Aircraft dataset. In contrast, 

the self-supervised method proposed in this study eliminates the need for extensive manual annotations 

and achieves a substantial performance gain [29,30]. Moreover, compared with attention-based weakly 

supervised methods—such as the weakly supervised fine-grained classification method based on 

attention mechanisms—whose Top-1 accuracy is 83.9% on the CUB-200-2011 dataset and 82.1% on the 

FGVC-Aircraft dataset, the proposed method achieves better results in terms of accuracy, recall and F1 

score. These results highlight the advantages of combining multi-scale attention with contrastive 

learning. 

 

3.3 Ablation Study 

 

To evaluate the roles of the multi-scale attention module and contrastive learning within the model, 

ablation experiments were conducted [31,32]. The results show that removing the multi-scale attention 
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module reduces the Top-1 accuracy to 85.1% on the CUB-200-2011 dataset and 83.2% on the FGVC-

Aircraft dataset. When contrastive learning is removed, the accuracy decreases more significantly, 

dropping to 78.6% on the CUB-200-2011 dataset and 75.4% on the FGVC-Aircraft dataset. These results 

clearly demonstrate that both the multi-scale attention module and contrastive learning play critical 

roles in improving model performance. 

 

4. Conclusion 
 

This study presents a self-supervised fine-grained image recognition framework that effectively 

combines a multi-scale attention mechanism with a contrastive learning strategy. The proposed method 

addresses two core challenges in fine-grained visual categorization: the need to capture subtle inter-

class differences and the high cost associated with manual annotations. By extracting hierarchical 

feature representations through multi-scale attention and enhancing discriminative capability via 

contrastive optimization, the model achieves accurate classification without relying on labeled data. 

Comprehensive experiments conducted on the CUB-200-2011 and FGVC-Aircraft datasets demonstrate 

the effectiveness of the approach. The proposed method achieves Top-1 accuracies of 89.2% and 87.5% 

on the two datasets respectively, outperforming several representative baseline methods. In particular, 

the model achieves an F1 score of 88.4% on CUB-200-2011 and 86.3% on FGVC-Aircraft, confirming its 

balanced performance in both precision and recall. The ablation analysis further highlights the 

indispensable role of both the multi-scale attention module and contrastive learning in enhancing 

recognition accuracy and generalization. The proposed framework not only provides a scalable and 

annotation-efficient solution for fine-grained image recognition but also offers strong potential for 

practical applications in ecological monitoring, intelligent surveillance, and e-commerce platforms. 

Future work will focus on expanding the framework to multi-modal scenarios, integrating transformer-

based architectures, and exploring domain adaptation capabilities to further improve robustness in real-

world environments. 
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