
Received: 6 October 2024 | Revised: 21 October 2024 | Accepted: 5 November 2024 | Published online: 9 November 2024

International Journal of Advance in Applied Science Research, Volume 3, 2024

https://h-tsp.com/

© The Author(s) 2024.

Published by High-Tech Science Press. This is an open access article under the CC BY License (https://creativecommons.org/licenses/by/4.0/).

A Dynamic Resource Allocation Strategy

for Cloud-Native Applications

Leveraging Markov Properties

Zhixuan Shen1,*, Yu Ma1, Jinnian Shen2
1Northeastern University, Portland, Maine, USA
2Northeastern University, Oakland, California, USA

*Author to whom correspondence should be addressed.

Abstract: This study examines resource usage characteristics in cloud-native systems and develops a model for

dynamically aligning resource allocations with application demands. Through feature analysis based on

operational and monitoring data from stateless applications, we validate that time-series CPU utilization data

adheres to Markovian properties. Building on this foundation, we propose a Markov-based resource allocation

strategy that segments resource requirements into discrete states, enabling pre-allocation of resources tailored

to each state. Additionally, an application infrastructure framework is designed to accommodate this strategy,

categorizing information system services and facilitating the transmission of business workload data to the

model's core. Within this framework, resource pre-allocation is abstracted into event-driven messages that

dynamically manage resource scaling across service types. Finally, we validate the proposed model with data

from a production system, providing insights into its efficacy through verification and analysis.
Keywords: Cloud-native systems, resource allocation, Markov property, dynamic resource management,

event-driven scaling.

1. Introduction

Dynamic pre-allocation mechanisms for resources in cloud-based data centers can significantly enhance

the stability of information systems [1][2]. When integrated with operational and maintenance practices,

these mechanisms contribute to reduced cluster energy consumption, highlighting their high research

value. This study addresses the operational and management requirements of multiple resource entities,

including computing and network resources, within the framework of cloud-native resource

management. The resource management scope encompasses lifecycle considerations, virtual machine

state calculations, and resource distribution [3]. The primary objective of dynamic resource adaptation

is to optimize information system workloads and achieve efficient cloud resource allocation. From a

business perspective, the advancement of dynamic resource matching technology holds long-term

potential for improving information system service quality.

In the context of cloud computing, the resource scheduling problem is commonly approached from two

main perspectives: the infrastructure resource pool and application services [4]. For the

https://h-tsp.com/
https://creativecommons.org/licenses/by/4.0/

International Journal of Advance in Applied Science Research, Volume 3, 2024

 100

infrastructure resource pool, scheduling strategies are designed to establish convergent boundaries,

aiming to minimize both maintenance and energy costs [5]. Current research indicates that finding a

global optimal solution for dynamic resource allocation strategies in cloud-native applications is

unfeasible using straightforward algorithms or rules. Although approximation and deep learning

methods are applied, they often yield unpredictable outcomes or impose substantial engineering costs,

rendering them impractical for real-world applications. Furthermore, the cumulative workload

generated by a large number of information systems often becomes highly complex and contingent on

the business context, complicating the creation of a universal scheduling strategy capable of effectively

handling diverse business scenarios [6]. To address these challenges, this paper proposes an event-

driven resource allocation model by examining resource scheduling characteristics within the railway’s

main data center.

2. Main Data Center Information System Resource Scheduling Method

In traditional resource management, resources are commonly allocated to users as either physical or

virtual operating systems. This approach often requires specialized configuration management tools for

initial software installation and deployment, followed by standardized automation tools to streamline

subsequent workflows. Despite the efficacy of this model in stable, low-demand environments, quota-

based resource allocation methods struggle to keep pace with rapid business growth and variable

workload demands. As a result, substantial research has been conducted, both domestically and

internationally, to explore strategies for dynamically adjusting resource configurations to optimize

utilization rates and minimize costs. Numerous resource allocation schemes have been proposed,

primarily based on metrics such as CPU utilization and memory usage, complemented by predictive

models that estimate future resource needs under varying load conditions [7]. Many of these approaches

incorporate live migration techniques to facilitate vertical scaling, thus enabling dynamic resource

allocation while improving overall resource utilization rates. For instance, Amazon Web Services (AWS)

offers the Lambda computing service, which operates user code on a high-availability infrastructure,

managing critical aspects such as server and operating system maintenance, capacity provisioning,

automatic scaling, as well as continuous monitoring and logging. By executing code only when required,

Lambda enables efficient scaling without the overhead of always-on resources, highlighting an

industry-wide shift towards on-demand resource management.

Cloud-native data exhibits characteristics that complicate resource management further, including large

volumes, diverse data types, and stringent requirements for timely processing. To meet these challenges,

operations and maintenance (O&M) teams have initiated advanced research into intelligent O&M

solutions tailored for cloud environments [8]. This includes a focus on intelligent monitoring and

perceptual analysis, leveraging sophisticated tools to monitor the operational status of infrastructure

[9]. Common architectures include Hadoop environments for data-intensive tasks, ELK (Elasticsearch,

Logstash, Kibana) stacks for real-time log analysis, and traditional Zabbix environments for system

monitoring. The ultimate aim of these systems is not only to detect faults but also to localize and resolve

issues quickly. Despite advancements from passive monitoring to more proactive maintenance, the

responsiveness at the application level remains limited, often leading to delays in detecting and

addressing service degradation caused by resource bottlenecks. This is particularly relevant for cloud-

native applications, where resource demands can change rapidly and require immediate adjustments.

In enterprise private clouds, resource response mechanisms are typically achieved through close

collaboration between users, development teams, and operations personnel [10]. However, challenges

International Journal of Advance in Applied Science Research, Volume 3, 2024

 101

persist in adapting resource allocation across host machines, especially for application systems that lack

fine-grained service decomposition. Applications with monolithic architectures or large-granularity

services frequently rely on vertical scaling or even migration when resource bottlenecks occur.

Although automated solutions can trigger resource adjustments based on predefined alerts, two major

issues remain unresolved. First, the latency in responding to resource reconfiguration alerts can lead to

temporary degradation or even interruption of application services, known as circuit-breaking events.

Such disruptions can significantly impact user experience and overall service quality. Second, to prevent

service degradation during peak loads, some operations teams over-provision resources based on peak

traffic projections, leading to substantial idle capacity during off-peak periods. This approach, while

safeguarding against performance degradation, often results in inefficient resource usage and increased

operational costs due to resource wastage.

To address these limitations, ongoing research explores the use of more granular resource allocation

models and predictive analytics to better align resource supply with demand fluctuations. Techniques

such as containerization, service decomposition, and microservices are gaining traction, enabling more

precise scaling capabilities. Moreover, event-driven models are emerging as promising solutions for

real-time resource management, where system and application events can directly influence resource

allocation decisions. By integrating predictive analytics with event-driven frameworks, resource

allocation models are better positioned to respond proactively to usage patterns, reducing the need for

over-provisioning while ensuring consistent service quality.

3. Business Volume Feature Analysis of Dynamic Allocation Strategy

Using the railway’s main data center as a case study, we classify its operations into six distinct business

categories. Prior research indicates that certain sectors, such as passenger transport and railway

construction, exhibit marked cyclical fluctuations in resource demand [11]. Accordingly, variations in

resource needs influenced by business load can be segmented into discrete, finite states that define the

information system’s resource requirements [12]. This paper focuses exclusively on the dynamic

allocation strategy for computing resources and operates under the following assumptions: surplus

resources are available for direct expansion of application systems, and each task can be completed

within a finite timeframe.

Monitoring data from three systems within the data center was collected over 50 weeks, with CPU

utilization data represented as PC, PM, and PQ . Using the natural week as the time dimension, data

was divided and standardized, with proportional weighting applied. The CPU usage frequency for each

system is represented by the set {PCn, PMn, PQn∣nR}, where 0<n<50. After standardizing each type

of monitoring data, we apply proportional weighting to form a feature variable T:

𝑇 = ∑𝑃𝑋
𝑃𝑋𝑖

∑ 𝑃𝑋𝑖
𝑛
𝑖=1

𝑛

√ 1
𝑛 − 1

∑ (𝑃𝑋𝑖
∑ 𝑃𝑋𝑖
𝑛
𝑖=1

𝑛
)
2

𝑛
𝑖=1

(1)

where X {C,M,Q}; and 0< n < 50.

Given X {C,M,Q}; and 0< n < 50, with the mean μ and standard deviation σ. Based on the mean-

reverting characteristic of the feature variable, the grading is set as shown in Table 1, and the deviation

from the feature value is used for grading. According to the above description, the data is processed as

follows: according to Table 2, the mean m=9.269 and standard deviation s=5.388 of the weighted CPU

International Journal of Advance in Applied Science Research, Volume 3, 2024

 102

utilization rate of the cluster are obtained. Since the CPU utilization rate of the cluster is relatively stable

during this period, it is divided into four states: very low utilization, low utilization, high utilization,

and very high utilization, for easy observation. The resource usage of the information system during

this period can be divided into the four states as shown in Table 3.

Table 1: Grading standard

Status Level Classification

1 Large Low Usage [0,m-s]

2 Low Usage [m-s,m-0.5s]

3 Normal [m-0.5s,m+0.5s]

4 High Usage [m+0.5s,m+s]

5 Large High Usage [m+s,∞]

Table 2: 50 weeks of characteristic data and status

Num CPU Usage Status Week Num Average CPU Usage Status

1 12.519 4 26 16.002 4

2 24.202 4 27 8.169 2

3 8.939 2 28 5.143 1

4 2.411 1 29 13.896 4

5 8.764 2 30 6.048 1

6 23.453 4 31 5.290 1

7 9.692 3 32 4.339 1

8 1.745 1 33 8.816 2

9 10.598 3 34 5.561 1

10 8.737 2 35 17.761 4

11 7.306 2 36 2.418 1

12 5.356 1 37 19.683 4

13 10.279 3 38 13.821 4

14 11.985 3 39 7.336 2

15 5.152 1 40 5.043 1

16 1.986 1 41 10.727 3

17 20.450 4 42 5.171 1

18 13.897 443 43 13.057 4

19 11.073 3 44 2.115 1

20 2.885 1 45 7.036 2

21 10.283 3 46 3.241 1

22 14.109 4 47 6.50 1

23 12.276 4 48 7.201 2

24 4.707 1 49 6.832 2

25 8.750 2 50 11.325 3

A chi-squared statistical test can be used to test the Markovian property of the above-mentioned

weighted CPU utilization rate sequence. Let the research sequence contain c possible states, and the

transition frequency probability matrix is denoted as fij(i,jϵE) . The calculation method for the marginal

probability P`j is as follows:

𝑃𝑗 =
∑ 𝑓𝑖𝑗
𝐶
𝑖=1

∑ ∑ 𝑓𝑖𝑗
𝐶
𝑗=1

𝐶
𝑖=1

(2)

International Journal of Advance in Applied Science Research, Volume 3, 2024

 103

where fij represents the frequency of transition from state i to state j. The marginal probability Pj′ is the

sum of the frequencies of transitions to state j divided by the total number of transitions in the sequence.

Table 3: System state classification

Status Level Classification Numerical interval

1 Large Low Usage [0,m-s] [0,6.583]

2 Low Usage [m-s,m-0.5s] [6.583,9.295]

4 High Usage [m+0.5s,m+s] [9.295,11.891]

5 Large High Usage [m+s,∞] [11.891,∞]

Table 4: One-step specific frequency marginal probability

Status 1 2 3 4

Marginal probability 0.367 0.224 0.163 0.245

Table 5: Chi-square statistic calculation

Status fi1 Fi2 Fi3 Fi4 Total

1 7.838 1.339 0.655 1.466 11.299

2 1.407 0.422 1.539 1.581 4.949

3 1.078 1.539 0.267 1.278 4.384

4 1.395 2.692 0.119 4.504 24.794

The transfer probability matrix element is Pi,j(i,jϵE), and the chi-square statistics can be calculated as

follows:

𝑋2 = 2∑ ∑ 𝑓𝑖𝑗
𝐶

𝑗=1

𝐶

𝑖=1
|𝑙𝑛

𝑃𝑖,𝑗

𝑃𝑗
| (3)

If the Chi-square distribution statistics obey the degree of freedom of (c-1)2, by querying the Chi-square

distribution table, for a given confidence α, if
𝑋2 > 𝑋𝑎

2〈(𝑐 − 1)2〉 (4)

Rejects the null hypothesis and considers the weighted CPU utilization of the cluster to be Markov

under the given confidence α, as shown in Table 2: α=0.05, c=4. The one-step transition probability

matrix is:

𝑃1 = [

0.706 0.058 0.118 0.118
0.182 0.182 0.273 0.363
0.125 0.375 0.125 0.375
0.231 0.384 0.154 0.231

] (5)

Null hypothesis rejected, test complete. The above results are calculated using CPU utilization. In a real

production environment, more detailed monitoring data, such as database or cache compute resource

usage, can be used for stateless applications.

4. Design and Verification of a Dynamic Resource Allocation Model

4.1 Model Design

The primary objective of the model design is to generate a resource pre-allocation strategy based on the

current state of the information system using real-time monitoring data. When a state transition occurs,

the model preemptively adjusts resource allocations to meet anticipated demands. This requires

defining the input data sources, setting state transition probability thresholds, and establishing a front-

end expansion strategy for the policy. Let the discrete state space of system resource consumption be

represented by S, and let TS denote the consumption threshold corresponding to each state. The model

International Journal of Advance in Applied Science Research, Volume 3, 2024

 104

selects the state with the highest transition probability to determine the resource allocation in the current

monitoring state. The dynamic resource allocation policy can be expressed as:

min[𝑇𝑆1, 𝑇𝑆2, … , 𝑇𝑆𝑛] where 𝑛 ∈ 𝑆𝑚 , 𝑆𝑚 = TableMap[max(𝑃𝑗
′) , 𝑆] (6)

Here, various random events serve as input source data, which can be categorized into the following

five types:

System events: These events are triggered by changes in computing resources, such as CPU or memory

usage alerts.

Platform events: These include events resulting from changes in the cloud platform, such as variations

in platform load.

Monitoring events: Application monitoring events are derived from monitoring platforms like

Prometheus, which track system metrics.

Middleware events: These events originate from middleware within the application system, including

database and message queue events.

External events: Additional external events, such as those received via gRPC, provide further extensions

beyond the aforementioned event types.

Within the model, two core roles are established to maintain balanced boundaries:

Threshold adaptation: This service exposes a large set of event-related metrics, such as queue length,

allowing for event-based scaling by consuming specific types of event data. It communicates directly

with cloud platform scaling mechanisms like the Horizontal Pod Autoscaler (HPA) to adjust the number

of deployment replicas dynamically. Events are consumed directly from the source by the deployment,

ensuring a rich integration of event data for processing or discarding. Queue messages and other event

data are then available for immediate use.

Expansion policy: This component supports functions such as activation, deregistration, and dynamic

scaling, allowing the system to scale resources down to zero in the absence of state-changing events.

Scaling policies determine whether a deployment should be activated or deactivated, and they send

feedback to the originating event source. This feedback loop, illustrated in Figure 1, facilitates efficient

model deployment by adapting to real-time resource demands.

The model’s preemptive approach, relying on state transition probabilities and event-driven

mechanisms, aims to enhance resource utilization by dynamically aligning resource allocation with

system demand.

International Journal of Advance in Applied Science Research, Volume 3, 2024

 105

Figure 1: Model deployment

Figure 2: CPU Usage and Case increment along time

4.2 Model Evaluation

The model evaluation focuses on assessing the responsiveness of cluster resources, the accuracy of

resource allocation policies, and the response time for capacity expansion in stateless application

services. For this purpose, CPU utilization monitoring data from system K, deployed in an isolated

environment, was used as the input data source. The data covers a period of 372 days, with the first 186

days used to determine states according to the grading standards in Table 1, which were then used to

calculate the state transition probability matrix. The remaining 186 days of data served as validation

data.

As shown in Figure 2, the slider at the bottom illustrates the segmentation of the dataset used for

evaluation. In the main graph, represented as a broken line, all data points are upsampled according to

the daily average values. Since the maximum peak CPU utilization of the test system remains below

50%, the overall task volume is relatively low, resulting in the resource allocation strategy primarily

reducing or maintaining the number of instances. Forward capacity expansion is triggered only for a

International Journal of Advance in Applied Science Research, Volume 3, 2024

 106

few unexpected high-demand tasks, indicating that the strategy employs a somewhat “greedy”

approach—allocating resources preemptively to handle potential surges in demand. While this

approach provides responsiveness during business surges, it can lead to occasional resource wastage.

The Pearson correlation coefficient between the resource allocation increments and the CPU utilization

data is calculated to be 0.56, indicating a moderate positive correlation. This outcome suggests that the

pre-allocation strategy in the dynamic resource allocation model designed in this study correlates to

some extent with subsequent fluctuations in information system traffic, affirming its potential for real-

world application.

5. Conclusion

Dynamic resource allocation challenges faced by most cloud platforms, including railway master data

centers, are classified as non-deterministic polynomial (NP) complete problems, which are inherently

difficult to solve within polynomial time constraints. Given the specific service characteristics of the

system, this study divides system resource demands into finite states, each associated with a fixed

resource increment. This pre-allocation of resources for the upcoming cycle requires a balance between

response accuracy and application efficiency.

The model’s final allocation results reveal a “greedy” approach, which proves advantageous for

capacity reduction but, to some extent, increases the energy consumption of the data center and leads

to occasional underutilization of resources. Thus, to optimize both the stability of resource response and

resource utilization, further research should focus on refining the greedy weight coefficient within the

allocation strategy. This adjustment aims to reduce resource wastage while maintaining a responsive

system.

References

[1] Mohamed A, Hamdan M, Khan S, et al. Software-defined networks for resource allocation in cloud

computing: A survey[J]. Computer Networks, 2021, 195: 108151.

[2] Yan J, Huang Y, Gupta A, et al. Energy-aware systems for real-time job scheduling in cloud data

centers: A deep reinforcement learning approach[J]. Computers and Electrical Engineering, 2022,

99: 107688.

[3] Goiri Í, Julia F, Ejarque J, et al. Introducing virtual execution environments for application lifecycle

management and SLA-driven resource distribution within service providers[C]//2009 Eighth IEEE

International Symposium on Network Computing and Applications. IEEE, 2009: 211-218.

[4] Gmach D, Rolia J, Cherkasova L, et al. An integrated approach to resource pool management:

Policies, efficiency and quality metrics[C]//2008 IEEE International Conference on Dependable

Systems and Networks With FTCS and DCC (DSN). IEEE, 2008: 326-335.

[5] Liu X, Buyya R. Resource management and scheduling in distributed stream processing systems:

a taxonomy, review, and future directions[J]. ACM Computing Surveys (CSUR), 2020, 53(3): 1-41.

[6] Wu Z, Liu X, Ni Z, et al. A market-oriented hierarchical scheduling strategy in cloud workflow

systems[J]. The Journal of Supercomputing, 2013, 63: 256-293.

[7] Weingärtner R, Bräscher G B, Westphall C B. Cloud resource management: A survey on forecasting

and profiling models[J]. Journal of Network and Computer Applications, 2015, 47: 99-106.

[8] Yu S D. Research on cloud computing in the key technologies of railway intelligent operation and

maintenance sharing platform[C]//Journal of Physics: Conference Series. IOP Publishing, 2021,

1800(1): 012010.

International Journal of Advance in Applied Science Research, Volume 3, 2024

 107

[9] Aiftimiei C, Costantini A, Bucchi R, et al. Cloud Environment Automation: from infrastructure

deployment to application monitoring[C]//Journal of Physics: Conference Series. IOP Publishing,

2017, 898(8): 082016.

[10] Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges[J].

Journal of internet services and applications, 2010, 1: 7-18.

[11] Grebler L, Burns L S. Construction cycles in the United States since world war II[J]. Real Estate

Economics, 1982, 10(2): 123-151.

[12] Castro J, Kolp M, Mylopoulos J. Towards requirements-driven information systems engineering:

the Tropos project[J]. Information systems, 2002, 27(6): 365-389.

