

Improvement of Network Control Software in Electronic Computer Engineering

Aicheng Zhang

Gelug University Thailand Bangkok 10220

Abstract: *With the rapid development of China's society, economy, and culture in recent years, we are no longer unfamiliar with various computer electronic devices, and even have a certain pursuit and understanding of the upgrading and replacement of these computer devices and computer network systems. This article explores the improvement methods of electronic computer engineering network control software, aiming to enhance the stability, reliability, user friendliness, usability, and strengthen maintenance and support of the software. By optimizing software design, enhancing security performance, improving compatibility and scalability, improving user interface and functionality, establishing comprehensive maintenance processes, and providing comprehensive technical support, the overall performance of network control software can be effectively improved. These improvement methods not only help meet the constantly changing needs of users, but also enhance the competitiveness and market share of software, providing strong support for the sustainable development of electronic computer engineering.*

Keywords: Electronic Computer Engineering; Network control software; Improvement.

1. INTRODUCTION

The development of computer networks has reached an immeasurable level, and most enterprises have established independent local area networks. The purpose of utilizing the internet is not only to meet the basic needs of browsing web pages or sending and receiving emails, but also to achieve the dominant role of the internet in business. Therefore, how to use network control software to improve work efficiency and achieve effective resource sharing is the core problem that needs to be solved today. The article will explore improvement methods for network control software from multiple perspectives, aiming to provide strong support for the development of electronic computer engineering. Recent research advances in intelligent automation and reliability engineering have demonstrated significant progress across various domains. In the field of network testing, Tu (2025) proposes AutoNetTest, a platform-aware framework designed for intelligent 5G network test automation and issue diagnosis [1]. Complementing this, Zhu (2025) introduces REACTOR, a framework focusing on reliability engineering through automated causal tracking and observability reasoning [2]. Similarly, Yang (2025) investigates site reliability optimization technology based on synthetic monitoring within cloud environments [3]. In autonomous systems, Tang et al. (2026) present SVD-BDRL, a trustworthy autonomous driving decision framework enhanced by sparse voxels and blockchain technology [4]. For 3D content generation, Lu et al. (2025) develop NeuroDiff3D, a method that optimizes viewpoint consistency through diffusion modeling [5]. The domain of federated learning has seen focused efforts on security and privacy, with Deng and Yang (2025) proposing multi-layer defense strategies and privacy-preserving enhancements against membership reasoning attacks [6], and Sultan et al. (2026) introducing FedGuard, a robust federated AI framework for privacy-conscious collaborative anti-money laundering applications [7]. In supply chain management, Zhang (2024) researches the dynamic adaptation of supply and demand for power emergency materials using cohesive hierarchical clustering [8]. The impact of emerging technologies is explored by Zhou and Cen (2024), who investigate the effect of ChatGPT-like AI on user entrepreneurial activities [9]. Furthermore, methodological innovations are evident in the work of Zheng and Jiang (2025), who propose a new methodology for Chinese term extraction from scientific publications [10], and Wu et al. (2025), who address small-sample object detection for surface cracks in concrete structures via multi-level transfer learning [11].

2. THE IMPORTANCE OF NETWORK CONTROL IN ELECTRONIC COMPUTER ENGINEERING

Electronic computer engineering network control is not only the cornerstone of information technology development, but also a key force in promoting digital transformation in various industries.

2.1 From the perspective of information technology development, electronic computer engineering network control is the core to ensure the stable operation of computer systems and networks

Through precise network control, effective management and scheduling of computer hardware, software, and network resources can be achieved, thereby improving the operational efficiency and stability of the system. This control not only involves the smoothness of data transmission, but also the accuracy and security of data processing, providing a solid guarantee for the widespread application of information technology.

2.2 In promoting the digital transformation of various industries, electronic computer engineering network control also plays an irreplaceable role

With the continuous development of technologies such as cloud computing, big data, and the Internet of Things, various industries are actively exploring the path of digital transformation. As a bridge connecting various technologies and applications, network control can effectively integrate and efficiently utilize various data and information, thereby promoting the optimization and innovation of business processes.

2.3 Electronic Computer Engineering Network Control is of great significance for enhancing the competitiveness and innovation capability of enterprises

By building an efficient and stable network control system, enterprises can achieve real-time monitoring and optimization of various links such as production, sales, and logistics, improving operational efficiency and service quality. Meanwhile, network control also provides strong support for innovation in enterprises, enabling them to respond more flexibly to market changes and develop more competitive products and services. Electronic computer engineering network control plays a crucial role in modern society. It is not only the cornerstone of information technology development, but also a key force in promoting digital transformation in various industries, enhancing enterprise competitiveness and innovation capabilities. Therefore, we should attach great importance to the research and application of network control, and contribute our own strength to the continuous development of information technology and the comprehensive progress of society.

3. ANALYSIS OF THE CURRENT STATUS OF NETWORK CONTROL SOFTWARE IN ELECTRONIC COMPUTER ENGINEERING**3.1 Impact of Computer Hardware Equipment**

As the carrier of network control software, the performance, configuration, and compatibility of computer hardware devices directly determine whether the software can fully utilize its functions. With the rapid development of information technology, computer hardware devices are constantly being updated and upgraded, with increasingly powerful performance, but at the same time, higher requirements are also being put forward for network control software.

On the one hand, high-performance computer hardware devices can support more complex and efficient algorithms and data processing capabilities, enabling network control software to respond to various network requests and instructions more quickly and accurately. This can not only improve the overall operational efficiency of the network system, but also enhance the security and stability of the system.

On the other hand, compatibility issues with computer hardware devices are also one of the challenges that network control software needs to face. There may be differences in hardware devices of different brands and models, which may result in network control software not functioning properly or performance degradation on certain devices.

3.2 Threats of Computer System Vulnerabilities

In the current analysis of network control software in electronic computer engineering, the threat of computer system vulnerabilities is an extremely critical and urgent issue. Computer system vulnerabilities refer to defects or weaknesses that exist in a computer system and may be exploited by malicious users or programs. These vulnerabilities may stem from negligence in software design, coding, configuration, or update processes, or may be caused by defects in hardware devices. For network control software, the existence of system vulnerabilities implies potential security risks. On the one hand, malicious users may exploit system vulnerabilities to attack

network control software, attempting to gain unauthorized access, tamper with data, or disrupt system functionality. This type of attack may not only lead to data leakage and property damage, but also pose a serious threat to the stability and security of the entire network system. On the other hand, system vulnerabilities may also be used to spread malicious software such as viruses, worms, and trojans. These malicious software may lurk in network control software and be activated under specific conditions, causing damage to the entire network system.

3.3 Challenges in Software Technology Development

With the continuous advancement of information technology, software technology is also developing rapidly, which brings new opportunities and unprecedented challenges to network control software. On the one hand, new software technologies such as cloud computing, big data, artificial intelligence, etc. are gradually changing the design and implementation of network control software. These new technologies provide network control software with stronger data processing capabilities, more flexible resource scheduling methods, and more intelligent decision support, but at the same time require software developers to have higher technical levels and richer practical experience. On the other hand, the rapid development of software technology has also intensified the complexity and uncertainty of software systems. Network control software needs to adapt to constantly changing network environments, business requirements, and technical standards, which requires software developers to have the ability to respond quickly and adjust flexibly. However, in actual development, due to factors such as rapid technological updates, frequent changes in requirements, and personnel turnover, it is often difficult to ensure the stability and reliability of software systems.

4. IMPROVEMENT METHODS FOR NETWORK CONTROL SOFTWARE IN ELECTRONIC COMPUTER ENGINEERING

4.1 Enhance the security performance of software

In the improvement methods of electronic computer engineering network control software, enhancing the security performance of the software is a crucial part. With the increasingly complex network environment and the continuous upgrading of hacker attack methods, network control software is facing unprecedented security challenges. Therefore, it is necessary to start from multiple levels and comprehensively improve the security performance of the software. In the software design phase, security needs to be the primary consideration. By adopting advanced encryption technology and security protocols, the security of software during data transmission, storage, and processing is ensured. At the same time, strict code review and testing of the software are also required to discover and fix potential security vulnerabilities. In addition, dynamic security monitoring and protection mechanisms need to be implemented during software operation. This includes real-time monitoring of network traffic, detecting abnormal behavior, and preventing malicious attacks. By introducing intelligent security analysis technologies such as machine learning, deep learning, etc., rapid identification and response to network attacks can be achieved. In addition to technical means, it is also necessary to strengthen software security management and training. Establish a sound security management system, clarify security responsibilities and obligations, and ensure the security of software during development, deployment, and operation. At the same time, it is necessary to regularly provide security training to developers to enhance their security awareness and skill level. Finally, collaborating with third-party security agencies is also an effective way to enhance software security performance. By collaborating with professional security agencies, the latest security information and vulnerability intelligence can be obtained, enabling timely understanding and response to new security threats. At the same time, the professional strength of third-party security agencies can be utilized to conduct comprehensive security assessments and testing of software, ensuring that its security meets industry standards and regulatory requirements.

4.2 Optimize software compatibility and scalability

In the field of electronic computer engineering, the compatibility and scalability of network control software are key elements for its widespread applicability and sustainable development. For compatibility optimization, it is necessary to have a deep understanding of the differences between different operating systems, hardware platforms, and network protocols. Through modular design, the core functions of network control software are separated from specific implementation details, enabling the software to adapt more flexibly to different environments. In addition, utilizing interface standardization techniques such as API (Application Programming Interface) and SDK (Software Development Kit) can further reduce the coupling between software, hardware, and operating systems, and improve the cross platform compatibility of software. In terms of scalability, it is necessary

to anticipate potential technological and business demand changes in the future. This requires that in software design, not only should current functionality be considered, but also space should be reserved for future expansion. For example, by adopting a microservice architecture, network control software can be split into multiple independent service modules, each of which can be independently developed, deployed, and upgraded, thereby improving the scalability and flexibility of the software.

Meanwhile, utilizing containerization technologies such as Docker and Kubernetes can further simplify software deployment and management, enabling software to quickly adapt to new hardware and operating system environments. In addition to technical optimization, we also need to strengthen communication and collaboration among software development teams. Through regular technical sharing and code reviews, ensure that team members have a deep understanding of software design and implementation, so that they can quickly find solutions when encountering compatibility or scalability issues. In addition, maintaining close contact with industry peers and open source communities is also an important way to enhance software compatibility and scalability. By participating in open source projects, sharing technical experience and solutions, the iteration speed of software technology can be accelerated, and the quality and performance of software can be improved.

4.3 Improving software stability and reliability

In the improvement of network control software in electronic computer engineering, enhancing software stability and reliability is crucial. This not only concerns whether the software can continue to run stably in complex and changing network environments, but also directly affects users' trust and satisfaction with the system.

4.3.1 Strict testing and verification

At different stages of software development, comprehensive unit testing, integration testing, and system testing should be implemented to ensure that each functional module and the overall system can work as expected. By simulating various extreme conditions and abnormal scenarios, potential defects and vulnerabilities can be discovered and fixed, thereby improving the robustness of software.

4.3.2 Robust error handling and recovery mechanisms

When software encounters runtime errors or abnormal situations, it should be able to quickly locate the problem, record error logs, and restore the system to normal operation as much as possible. This requires developers to consider various possible error scenarios at the beginning of the design and develop corresponding error handling strategies.

4.3.3 Continuous monitoring and maintenance

By introducing a real-time monitoring system, the running status, resource usage, and performance indicators of the software can be tracked in real time, and potential problems can be identified and addressed in a timely manner. Meanwhile, regular software updates and maintenance are also essential to fix known vulnerabilities, improve performance, and introduce new features.

4.3.4 Optimization of Software Architecture

Adopting high availability architectures such as load balancing, failover, and redundant deployment can enhance the system's fault tolerance and recovery capabilities. Meanwhile, through modular design, breaking down complex systems into multiple independent and manageable modules can reduce system complexity, improve maintainability and reliability.

4.4 Enhance the user friendliness and usability of the software

In the improvement strategy of electronic computer engineering network control software, enhancing the user friendliness and usability of the software is not only related to user experience, but also directly affects the popularity and application effectiveness of the software. An intuitive, concise, and easy to understand interface design can greatly reduce users' learning costs and improve usage efficiency. In interface design, attention should be paid to color matching, reasonable layout, and clear readability of icons and text. At the same time, by providing

clear navigation and feedback mechanisms, it helps users quickly find the required functions and understand the operation results in real time.

In addition, while maintaining core functionality, iterative upgrades should be continuously made based on user feedback and needs, adding practical and easy-to-use auxiliary functions. For example, providing convenient functions such as automated configuration tools, intelligent diagnostic systems, and one click recovery to reduce the difficulty and complexity of user operations. Furthermore, the establishment of user education and support systems is equally important for improving the user friendliness of software. By providing detailed user manuals, online tutorials, and frequently asked questions and other learning resources, we help users quickly get started and solve practical problems.

At the same time, establish a professional customer service team to provide timely and professional technical support and consulting services, enhance user trust and satisfaction, and also focus on personalized and customized software services. Provide configurable options and customized solutions based on users' specific needs and preferences. This not only meets the personalized needs of users, but also enhances their sense of belonging and loyalty to the software.

4.5 Strengthen software maintenance and support

Strengthening software maintenance and support is crucial in the improvement methods of electronic computer engineering network control software, as it directly affects the long-term stable operation of the software and user satisfaction.

4.5.1 Establish a comprehensive maintenance process

This includes regular software updates, vulnerability fixes, performance optimizations, and more. By developing a detailed maintenance plan, ensure that the software can receive necessary updates and upgrades in a timely manner to adapt to the constantly changing network environment and user needs. At the same time, establishing a rapid response mechanism can quickly locate and resolve user feedback issues, reducing business interruptions caused by software failures.

4.5.2 Provide comprehensive technical support

This includes establishing a professional technical support team, providing multiple contact methods such as phone, email, and online chat to ensure that users can receive assistance at any time. The technical support team should have rich technical knowledge and experience, be able to accurately identify the problem and provide effective solutions, and can also establish a user community to encourage users to share their experience and skills, create a mutual assistance atmosphere, and improve users' ability to solve problems on their own.

4.5.3 Strengthen software document management and training

By writing detailed user manuals, operation guides, and technical documents, users can quickly understand the functions and operation methods of the software, reducing malfunctions caused by improper operation. At the same time, regular training and guidance should be provided to users to improve their software usage skills, enhance their trust and satisfaction with the software.

4.5.4 Establish a user feedback mechanism

By collecting user opinions and suggestions, understanding their expectations and needs for the software, and providing direction for software improvement and optimization. At the same time, timely response and feedback should be given to users' feedback, so that they feel valued and cared for, and enhance their loyalty and stickiness.

5. CONCLUSION

In short, the improvement of network control software in electronic computer engineering is a continuous process. By implementing a series of improvement measures, it can effectively cope with the complexity of the network environment and the diversity of user needs, injecting new vitality into the sustainable development of electronic computer engineering. In the future, with the continuous advancement of technology and changing user demands,

we still need to constantly explore and innovate to promote the continuous optimization and upgrading of network control software.

REFERENCES

- [1] Tu, T. AutoNetTest: A Platform-Aware Framework for Intelligent 5G Network Test Automation and Issue Diagnosis. 2025.
- [2] Zhu, B. REACTOR: Reliability Engineering with Automated Causal Tracking and Observability Reasoning. 2025.
- [3] Yang, Y. Research on Site Reliability Optimization Technology Based on Synthetic Monitoring in Cloud Environments. 2025.
- [4] Tang, Z., Feng, Y., Zhang, J., & Wang, Z. SVD-BDRL: A trustworthy autonomous driving decision framework based on sparse voxels and blockchain enhancement. Alexandria Engineering Journal, 2026, 134, 433-446.
- [5] Lu, K., Sui, Q., Chen, X., & Wang, Z. NeuroDiff3D: a 3D generation method optimizing viewpoint consistency through diffusion modeling. Scientific Reports, 2025, 15(1), 41084.
- [6] Deng, X., & Yang, J. Multi-Layer Defense Strategies and Privacy Preserving Enhancements for Membership Reasoning Attacks in a Federated Learning Framework. In 2025 5th International Conference on Computer Science and Blockchain (CCSB), 2025, pp. 278-282. IEEE.
- [7] Sultan, N., Patwar, N., Wei, X., Chew, J., Liu, J., & Du, R. FedGuard: A Robust Federated AI Framework for Privacy-Conscious Collaborative AML, Inspired by DARPA GARD Principles. International Academic Journal of Social Science, 2026, 2, 1–16.
- [8] Zhang, X. Research on Dynamic Adaptation of Supply and Demand of Power Emergency Materials based on Cohesive Hierarchical Clustering. Innovation & Technology Advances, 2024, 2(2), 59–75.
- [9] Zhou, J., & Cen, W. Investigating the Effect of ChatGPT-like New Generation AI Technology on User Entrepreneurial Activities. Innovation & Technology Advances, 2024, 2(2), 1–20.
- [10] Zheng, H., & Jiang, T. A New Methodology for Chinese Term Extraction from Scientific Publications. Innovation & Technology Advances, 2025, 3(2), 19–45.
- [11] Wu, J., Luo, L., & Liao, N. Small-Sample Object Detection of Surface Cracks in Concrete Structures of High-Rise Buildings via Multi-Level Transfer Learning. Innovation & Technology Advances, 2025, 3(2), 57–72.