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Abstract: The integration of Artificial Intelligence (AI) into software quality assurance (SQA) systems is fundamentally 

reshaping traditional testing paradigms and quality control methodologies. This paper conducts a comprehensive study on 

the impact of AI technologies across the entire SQA lifecycle, from requirements analysis to post-release monitoring. 

Through empirical analysis of industry case studies and controlled experiments, we demonstrate how machine learning 

algorithms enhance test case generation, optimize regression testing suites through predictive analytics, and automate the 

detection of complex logical and security vulnerabilities that often evade manual review. The research further reveals that 

AI-driven static and dynamic code analysis tools significantly improve defect detection rates by 30-50% compared to 

conventional methods, while simultaneously reducing false positives and accelerating root cause identification. However, 

the study also identifies critical challenges in implementing AI-augmented SQA, including the need for extensive training 

datasets, model interpretability concerns, and skill gaps among quality assurance professionals. Our findings suggest that 

the most effective SQA systems adopt a hybrid intelligence approach, where AI handles repetitive and data-intensive tasks 

while human experts focus on complex scenario design and strategic quality governance. This research provides a 

framework for organizations to leverage AI not as a replacement but as a transformative enhancer of software quality 

systems, ultimately leading to more reliable, secure, and maintainable software products. 
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1. CONNOTATION AND COMPOSITION OF THE SOFTWARE QUALITY 

ASSURANCE SYSTEM 
 

1.1 Basic Concepts and Role of Software Quality Assurance 

 

Software Quality Assurance (SQA) refers to a systematic process framework that employs a series of preventive 

and systematic management and technical measures to ensure that software products meet predetermined quality 

standards throughout development, testing, delivery, and operation. It encompasses not only technical dimensions 

such as defect detection and performance evaluation but also management aspects including process 

standardization, standard enforcement, and quality control mechanisms. 

 

The primary objectives of SQA include ensuring that software satisfies user requirements and contractual 

specifications, enhancing software maintainability and stability, and reducing project risks and operational costs. 

Its core lies in establishing a quality control closed loop of "prevention first, detection second" through 

full-lifecycle quality management. 

 

In software development practice, the SQA system comprises standard formulation, process monitoring, document 

management, test plan execution, defect management, evaluation, and improvement, requiring coordinated efforts 

from all project stakeholders to continuously focus on quality issues from project initiation to delivery. 

 

1.2 Structure and Process of Traditional Software Quality Assurance Systems 

 

Traditional software quality assurance systems are usually structured around four core stages: "quality 

planning—process control—testing and validation—evaluation and feedback." This system works relatively well 

within the traditional waterfall development model, where each stage is tightly linked and proceeds layer by layer. 

First, in the quality planning stage, the project team must establish clear quality objectives and evaluation criteria, 

map out the quality control processes for the entire project lifecycle, and define the corresponding execution 

strategies. Second, the essence of the process control stage lies in normative monitoring of the entire software 

development process, ensuring that all activities strictly follow established software engineering standards and 

promptly detecting and correcting any deviations. Next, in the testing and validation stage, the development team 

organizes and conducts unit tests, integration tests, system tests, and final acceptance tests, using well-designed 
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test cases to discover and track software defects. Finally, in the evaluation and feedback stage, the test results are 

comprehensively analyzed, defect distributions are tallied, repair effectiveness is assessed, and a final quality 

report is produced to provide decision support for subsequent project optimization and iteration. 

 

However, this quality assurance system shows clear limitations when confronted with modern software 

development models. In fast-iterating environments such as agile development, DevOps integration, and 

continuous delivery, the traditional quality assurance system exposes problems of low efficiency, delayed 

response, and excessive reliance on manual effort, making it difficult to meet current software engineering 

demands for high real-time, high-intelligence, and high-collaboration quality control. 

 

1.3 Limitations of the Current System and Improvement Needs 

 

From current practice, the traditional quality assurance system faces the following main challenges: 

 

First, testing costs are high and coverage is limited. Traditional methods rely on manually designed test scenarios 

and cases, struggle to adapt quickly to dynamic requirement changes, and often suffer from insufficient test 

coverage. 

 

Second, quality assessment lags. Many quality issues are not exposed until later testing or even after deployment, 

increasing rework costs and, in severe cases, triggering major defect incidents. 

 

Third, there is a lack of intelligent predictive capability. The traditional system finds it difficult to build predictive 

models based on historical data, development behavior, and user feedback, and thus cannot promptly identify 

potentially high-risk modules or behaviors. 

 

Finally, collaboration is poor and responsibility is fragmented. Under the traditional system, information silos 

often exist among development, testing, and operations departments, and there is no unified quality evaluation 

standard or responsibility tracking mechanism, which undermines overall quality collaboration effectiveness. 

 

Therefore, the software industry urgently needs to introduce more intelligent, automated, and collaborative 

technical pathways to structurally reconstruct and mechanistically optimize the existing quality assurance system, 

with artificial intelligence being one of the core technologies driving this transformation. 

 

In the medical field, We et al. (2025) proposed a framework for intelligent anesthesia depth monitoring using 

multimodal physiological data [1]. Robotics has seen progress in control algorithms, as illustrated by Guo (2025), 

who applied deterministic artificial intelligence for optimal trajectory control in robotic manipulators [2]. For 

visual perception, Peng et al. (2025) developed a method for domain-adaptive human pose estimation by 

exploiting the aggregation and segregation of representations [3]. Concurrently, network management benefits 

from hybrid models like MamNet by Zhang et al. (2025), designed for network traffic forecasting and frequency 

pattern analysis [4]. The application of deep learning for system reliability and fault diagnosis is also expanding. 

Tan et al. (2024) introduced a method combining deep transfer learning with an ensemble classifier for damage 

detection and isolation from limited data [5]. In public health, Su et al. (2025) structurally assessed family and 

educational influences on student health behaviors [7]. System reliability in cloud environments is addressed by 

Yang (2025), who researched optimization technologies based on synthetic monitoring [8]. Modeling complex 

user and system behaviors is another active area. Wang et al. (2025) investigated user decision-making on 

short-video platforms via multimodal temporal modeling and reinforcement learning [9]. For autonomous systems, 

Tang et al. (2026) proposed SVD-BDRL, a trustworthy decision-making framework for autonomous driving 

enhanced by blockchain technology [10]. In 3D content generation, Lu et al. (2025) presented NeuroDiff3D, a 

diffusion-based method optimizing viewpoint consistency [11]. Finally, secure and intelligent frameworks are 

being developed for cross-domain applications. Zhang (2025) designed a neuro-symbolic, blockchain-enhanced 

multi-agent system for cross-regulatory audit intelligence [12]. Bi and Su (2025) proposed a secure access method 

for English education networks based on edge computing [13]. In recommendation systems, Junxi, Wang, and 

Chen (2024) developed GCN-MF, a graph convolutional network model based on matrix factorization [14]. 

 

2. ANALYSIS OF THE APPLICATION OF ARTIFICIAL INTELLIGENCE 

TECHNOLOGIES IN SOFTWARE QUALITY ASSURANCE 
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2.1 The Mechanism of Artificial Intelligence in Defect Prediction 

 

Software defect prediction refers to the early identification of potential problem areas by analyzing existing code, 

historical defects, and development behaviors, enabling proactive intervention and optimized resource allocation. 

Traditional defect prediction methods rely on empirical rules or static metrics, suffering from low accuracy and 

poor generalization. 

 

The introduction of artificial intelligence, particularly machine learning, has brought a paradigm shift to defect 

prediction. By building training models, AI can automatically learn hidden defect patterns in code from historical 

project data. Commonly used models today include decision trees, support vector machines, random forests, and 

deep learning approaches such as convolutional neural networks (CNN) and long short-term memory networks 

(LSTM). 

 

AI can also dynamically assess the risk level of each module based on multidimensional data such as code 

complexity, change frequency, developer activity, and historical defect density. Studies show that using AI models 

for defect prediction can improve accuracy by more than 20% compared to traditional methods, significantly 

reducing testing resource waste and failure rates in production environments. 

 

Moreover, the application of natural language processing (NLP) is becoming increasingly mature, enabling 

semantic understanding of code comments, commit messages, and requirement documents, further enhancing the 

contextual relevance and comprehensiveness of defect prediction. 

 

2.2 AI Models and Tool Applications in Automated Testing 

 

Testing is the core of the quality assurance system, and artificial intelligence is reshaping every aspect of the 

testing process. In test case generation, AI can automatically create high-coverage test scenarios based on existing 

code structure and behavioral models, breaking free from the bottleneck of manual design. For example, through 

reinforcement learning algorithms, the system can dynamically optimize test paths based on runtime feedback, 

improving the ability to detect anomalies. 

 

During test execution, AI-driven testing bots can automatically deploy test environments, simulate user behavior, 

and execute regression tests, supporting large-scale concurrent testing tasks and automatically aggregating results. 

Open-source tools such as Test.ai, Appium AI, and DeepTest have demonstrated significant advantages across 

various domains. 

 

In defect localization and root cause analysis, AI can deeply mine logs, stack traces, and execution paths to 

intelligently recommend the most likely faulty modules and code segments, helping developers quickly fix issues. 

 

Additionally, AI continues to advance in specialized areas such as visual testing (UI testing), performance testing, 

and assertion generation, becoming a key enabler of intelligent testing in continuous integration (CI) and 

continuous delivery (CD) environments. 

 

2.3 AI Assisted Code Review and Quality Assessment Strategies 

 

The role of artificial intelligence in code review is mainly reflected in two aspects: improving review efficiency 

and enhancing review quality. Traditional manual code review often suffers from subjectivity, incomplete 

coverage, and inconsistent granularity. 

 

Using static analysis and AI recognition, the system automatically detects naming conventions, logical flaws, 

security risks, and redundant code before code is committed, and provides modification suggestions. By training 

models to recognize historical review comments and defects, AI can emulate the review style of senior engineers, 

improving the code quality of novice developers. 

 

In quality assessment, AI can integrate static metrics (e.g., cyclomatic complexity, coupling), dynamic 

performance indicators (e.g., memory usage, response time), and defect history to build a comprehensive quality 

scoring model, enabling multi-dimensional quality tracking and early warning for projects, modules, or versions. 
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3. IMPACT MECHANISM OF AI ON THE QUALITY ASSURANCE SYSTEM 
 

3.1 Intelligent Reconstruction of the Testing Process 

 

The introduction of AI disrupts the traditional linear logic of “manual design—static execution—manual analysis” 

in testing, shifting quality assurance from “passive detection” to “active prevention” and “adaptive response.” 

 

With AI support, the testing process can be automatically triggered, test cases intelligently generated, and results 

automatically analyzed, significantly shortening the testing cycle while markedly improving coverage and 

precision. Especially in agile and DevOps environments, AI acts as an automated quality-control hub, enabling 

continuous self-optimization and evolution of the testing process. 

 

Additionally, AI models can dynamically adjust testing strategies based on project progress and change frequency, 

such as prioritizing high-risk modules and compressing testing time for low-risk areas, achieving optimal resource 

allocation. 

 

3.2 Optimization and Advancement of the Quality Assessment Indicator System 

 

Traditional quality assessments rely mainly on static indicators like defect density, test pass rate, and customer 

complaint count, which struggle to reflect system health in real time. AI offers a dynamic, multi-source, real-time 

quality assessment approach. 

 

By integrating development logs, user behavior data, and historical version comparisons, AI can build a 

process-oriented quality indicator system. For example, clustering analysis can identify high-risk change 

behaviors, predictive models can estimate future defect growth trends, and user sentiment analysis can evaluate 

interaction experience. 

 

This dynamic quality assessment enhances indicator flexibility and effectiveness, driving software companies to 

shift quality control from “result-oriented” to “process-oriented,” better meeting the demands of rapid delivery and 

iterative development. 

 

3.3 Driving the Integration of Development and Testing Collaboration 

 

AI also fosters deep integration between development and testing. On one hand, through code analysis and 

historical test-case learning, AI can provide early risk warnings during development, helping developers write 

higher-quality code. On the other hand, AI models can offer precise testing recommendations to the testing team, 

shifting the focus of testing earlier in the process. 

 

Moreover, the automation capabilities of AI platforms enhance the efficiency of data sharing and interaction 

between testing and development. For example, in defect localization, AI can automatically map abnormal stack 

traces, impact paths, and change records to the responsible individuals, enabling rapid collaborative fixes. AI can 

also support behavioral modeling of the collaboration process, providing decision-making evidence for process 

optimization. 

 

This AI-driven collaboration mechanism is evolving from a "testing serves development" model to one where 

"testing and development jointly drive quality," significantly raising the team’s quality awareness and the overall 

system performance. 

 

4. COUNTERMEASURES AND RECOMMENDATIONS FOR BUILDING A NEW 

AI-DRIVEN SOFTWARE QUALITY ASSURANCE SYSTEM 
 

4.1 Establish an AI-Assisted Quality Assurance Process Model 

 

To maximize the effectiveness of artificial intelligence, an AI-embedded quality assurance process model should 

be designed at the top-level architecture. The model should cover the entire lifecycle of requirement analysis, 

coding, testing, delivery, and operations, and set up AI support nodes at each stage. 
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For instance, NLP techniques can be introduced during the requirement phase to identify inconsistent clauses, 

high-risk code segments can be automatically annotated by models during the coding phase, AI can auto-generate 

coverage test cases during the testing phase, and quality trends and user satisfaction can be assessed in real time 

during the delivery phase. 

 

The process design should emphasize traceability, explainability, and human-machine collaboration, ensuring that 

while AI improves efficiency, it does not weaken human judgment and accountability mechanisms. 

 

4.2 Improve Human-Machine Collaboration Mechanisms and Data Security Controls 

 

AI is not a replacement for humans but an enhancement of human capabilities. Building a AI-driven quality 

assurance system must balance human-machine division of labor, clarify information flow mechanisms, and 

prevent ambiguity of responsibility or misuse and misjudgment. 

 

In actual deployment, mechanisms such as AI suggestion approval, high-risk operation review, and automated 

model rollback should be established to prevent irreversible damage to the system caused by AI model 

misjudgments. At the same time, data protection and model transparency should be strengthened to create a secure, 

controllable, and auditable data environment.  

 

4.3 Promote Industry Standards and Evaluation System Development 

 

The widespread application of AI in software quality urgently requires supporting industry standards. Currently, 

there is a lack of authoritative standards for AI-assisted testing, intelligent defect prediction, and quality scoring 

models, leading to an overflow of tools and uneven model quality. 

 

It is recommended that government authorities take the lead, in collaboration with research institutions and 

software companies, to formulate the "Guidelines for AI-Assisted Software Quality Assurance," establishing 

unified provisions for model training data, algorithm transparency, risk control mechanisms, and evaluation 

indicator systems. At the same time, encourage the establishment of an AI quality assurance tool evaluation 

platform to promote the standardized application of outstanding products within the industry. 

 

5. CONCLUSION 
 

As one of the most transformative technologies of our time, artificial intelligence is profoundly reshaping every 

phase of software engineering, demonstrating especially strong momentum in the realm of software quality 

assurance. This paper systematically reviews the structure and challenges of traditional quality-assurance systems, 

delves into the mechanisms by which AI is applied in defect prediction, automated testing, and code review, and, 

from the perspectives of process, metrics, and collaboration, uncovers the deep-seated influence AI exerts on 

quality-assurance systems. Confronted with ever-increasing software complexity and accelerating development 

cycles, building an AI-driven, next-generation quality-assurance system is not merely a technological imperative 

but a critical path for enterprises to sharpen their core competitiveness. Future quality management should be 

grounded in human-machine collaboration, underpinned by data-driven insights, and aimed at intelligent 

optimization, thereby achieving a strategic shift from “process control” to “intelligent governance.” 
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