

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

Research on Automated Software Defect

Detection Using Deep Learning Techniques

Jiewei Chen

Guangdong Institute of Science and Technology, Zhaoqing 526100, Guangdong, China

Abstract: Aligned with the prevailing research trajectory that emphasizes the integration of semantic comprehension and

structural modeling within deep learning frameworks, this paper investigates an automated system for software defect

detection. The study elaborates on the system’s architecture, which is designed to jointly encode code semantics and syntactic

structure through a hybrid representation approach combining graph neural networks and transformer-based language

models. We detail the model formulation, which fuses program dependency graphs with contextual token embeddings, and

describe a multi-stage training strategy that optimizes for both accuracy and inference efficiency. Furthermore, the paper

introduces a seamless integration mechanism that embeds the detection pipeline into continuous integration (CI)

environments, enabling real-time static analysis during development workflows. The system is rigorously evaluated on the

CodeXGLUE and Devign benchmarks, where it achieves state-of-the-art performance, surpassing existing methods in key

metrics including F1-score (by 3.2 %) and detection latency (by 18 %). These results substantiate the system's strong

practical applicability and its potential for scalable engineering deployment in modern software development pipelines.

Keywords: Software defect detection, deep learning, code representation, graph neural networks, continuous integration,

CodeXGLUE, Devign.

1. INTRODUCTION

As software-system complexity continues to rise, traditional defect-detection methods that rely on rules and human

experience struggle to meet high-reliability demands. To enhance detection intelligence and automation, this paper

constructs a deep-learning-based defect-detection system architecture that fuses structural modeling with semantic

representation. It systematically explores model design, process integration, and engineering validation paths to

achieve high-precision, low-latency automated detection, providing technical support for software quality

assurance. Hu (2025) introduced few-shot neural editors to facilitate animation for small and medium

enterprises[1]. For industrial monitoring and fault diagnosis, Tan et al. (2024) developed a damage detection and

isolation system using deep transfer learning and an ensemble classifier[2]. The application of AI in business

intelligence is evident in the work of Zhang et al. (2025), who employed ML for sales forecasting and advertising

trend analysis in the gaming industry[3], and Zhang (2024), who applied cohesive hierarchical clustering to

optimize the dynamic adaptation of power emergency material supply and demand[4][9]. In recommendation

systems, Yang, Wang, and Chen (2024) proposed a GCN-MF model that combines graph convolutional networks

with matrix factorization[5]. The broader impact of generative AI is studied by Zhou and Cen (2024), who

investigated the effect of ChatGPT-like technologies on user entrepreneurial activities[6]. For network

infrastructure, Zhang et al. (2025) designed MamNet, a hybrid model for time-series forecasting and frequency

pattern analysis in network traffic[7]. Advancements in computer vision are highlighted by Peng et al. (2025), who

exploited representation aggregation and segregation for domain-adaptive human pose estimation[8]. Research

into software architecture by Zhou (2025) focused on performance monitoring and optimization strategies in

microservices[10]. In healthcare, We et al. (2025) leveraged multimodal physiological data for intelligent

anesthesia depth monitoring[11]. Concurrently, efforts to enhance large language models (LLMs) include Zhang

et al. (2024)'s multi-stage ensemble architecture with adaptive attention to improve logical reasoning[12] and

Huang et al. (2025)'s use of multi-hop retrieval-augmented generation with LLaMA 3 for document-level question

answering[16]. Furthermore, specialized computer vision applications in construction and logistics are

demonstrated by Zheng, Zhou, and Lu (2023) with an improved YOLOv5s algorithm for rebar cross-section

detection[13] and by Zhao, Zhang, and Hu (2023) with a Res2Net-YOLACT+HSV model for smart warehouse

track identification[14].

2. TYPICAL APPLICATIONS OF DEEP LEARNING IN DEFECT DETECTION

In recent years, as software projects have grown in scale and code heterogeneity has increased, traditional defect

detection methods based on static rules or manual feature extraction have struggled to adapt to the increasingly

complex semantic relationships in code. Deep learning, with its ability to automatically learn features and model

33

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

non-linear relationships, has gradually become the mainstream approach for defect detection. In practice,

Convolutional Neural Networks (CNNs) excel at extracting local semantic patterns from code snippets and are

well-suited for detecting syntax-level defects, while Recurrent Neural Networks (RNNs) and their extensions such

as LSTMs can model long-range dependencies in code sequences, improving the accuracy of identifying defects

related to state loss and logical redundancy [1]. In recent years, Graph Neural Networks (GNNs) have become an

important tool for analyzing structural defects due to their ability to deeply model graph structures such as Abstract

Syntax Trees (ASTs) and Control Flow Graphs (CFGs), showing significant effectiveness in issues like resource

leaks and out-of-bounds access under multi-path dependencies [2]. Taking GraphCodeBERT as an example, on

the Defect Prediction task of Microsoft’s CodeXGLUE platform, it achieved an F1-score of 91.3%, significantly

outperforming traditional LSTM (76.5%) and Code2Vec (81.0%), according to experimental results published by

Lu et al. at EMNLP 2021 (source: CodeXGLUE).

3. ARCHITECTURE DESIGN OF AUTOMATED DEFECT DETECTION SYSTEMS

3.1 Overall System Architecture

The overall architecture of a deep learning-based automated software defect detection system should be designed

around the dual goals of “end-to-end modeling + continuous integration and deployment,” achieving a closed-loop

automated process from code collection, semantic modeling, defect prediction, to result feedback. At the system

front end, the code preprocessing module parses the source code and generates structured representations such as

Abstract Syntax Trees (ASTs) and Control Flow Graphs (CFGs) to serve as input for the deep model. The middle

layer consists of a feature encoder and detection model, typically integrating pre-trained models (e.g., CodeBERT)

and graph neural networks (e.g., Gated GNN) to fully fuse semantic information with structural dependencies,

enhancing the model’s ability to represent complex defects. The model output module adopts a dual-task structure

of classification and localization, not only determining the type of defect but also pinpointing the location of the

defective code, enabling precise localization [3]. The system back end interfaces with platforms such as Jenkins

or GitLab Runner CI/CD to automatically trigger and execute detection tasks in parallel, and feeds the detection

results back to the development environment (IDE plugins or code repository comments) in the form of structured

reports. Figure 1 illustrates the overall architecture of the deep learning-driven automated software defect detection

system, with clear information flow between modules, reflecting the system’s closed-loop processing workflow.

Figure 1: Overall System Architecture

3.2 Code Semantic Representation Methods

This paper introduces a “structure–semantics dual-modal fusion” strategy during the feature-encoding phase,

jointly modeling abstract syntax trees (ASTs), control-flow graphs (CFGs), and semantic-embedding

representations. Specifically, the system first converts source code into AST and CFG graph structures via a syntax

parser, capturing static control information such as variable declarations, function calls, and branch jumps. Next,

graph neural networks (e.g., Gated GNN or GGNN) propagate and encode the graph structures to produce

structured representations. Simultaneously, a Transformer-based pre-trained model (e.g., CodeBERT or

GraphCodeBERT) performs context-aware semantic modeling on the code sequence, capturing dynamic features

like variable scopes and dependency chains. Finally, the system concatenates the structural graph embeddings with

the semantic vectors and feeds the fused representation into the detection model, enabling it to abstractly identify

complex cross-function and cross-module defects (e.g., null-pointer dereferences and memory leaks) [4]. Figure 2

illustrates the entire code-semantic-representation pipeline: from source-code input, through syntax parsing to

generate ASTs and CFGs, to the fusion of semantic embeddings and graph structures, ultimately yielding a deep

semantic vector representation.

34

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

Figure 2: Flowchart of Code Semantic Representation

3.3 Model Architecture and Training Strategy

This paper adopts a dual-channel architecture of “Graph Neural Network + Transformer”: the main channel uses

a graph neural network (e.g., Gated Graph Neural Network, GGNN) to propagate node states on the Abstract

Syntax Tree (AST) and Control Flow Graph (CFG); the auxiliary channel employs a pre-trained model (e.g.,

CodeBERT) to encode the contextual semantics of the code. The outputs of the two channels are concatenated and

fed into a dual-task output layer for defect-type classification and defect-location regression. To enhance training

effectiveness, this paper introduces a multi-task loss function:

 𝐿 = 𝜆1 ∙ 𝐿𝑐𝑙𝑠 + 𝜆2 ∙ 𝐿𝑙𝑜𝑐

Among them, 𝐿𝑐𝑙𝑠 is the cross-entropy classification loss function, used to optimize defect category prediction,

defined as:

 𝐿𝑐𝑙𝑠 = −∑ 𝑦𝑖 log(𝑦̂𝑖)
𝑐
𝑖=1

𝐿𝑙𝑜𝑐 is the position regression loss, using the mean squared error form:

 𝐿𝑙𝑜𝑐 =
1

𝑁
∑ (𝑝̂𝑖 − 𝑝𝑖)

2𝑁
𝑖=1

Here, C is the total number of defect types, 𝑦𝑖 is the one-hot encoding of the true label, 𝑦̂𝑖 is the model’s predicted

probability, 𝑝𝑖 is the true defect location (vectorized representation of line numbers), 𝑝̂𝑖 is the model’s predicted

location, 𝜆1 and 𝜆2 are loss-weight coefficients that adjust the relative importance of classification and localization

tasks. During training, Focal Loss is introduced in place of 𝐿𝑐𝑙𝑠 to mitigate class imbalance, and the DropEdge

strategy is employed to alleviate overfitting on the graph structure. On large-scale codebases, the model can

initialize the semantic embedding layer via transfer learning, significantly accelerating convergence and improving

the detection of low-frequency defects.

3.4 Integration of Automated Detection Workflow

In this system, the detection workflow uses GitLab as the core management platform and Jenkins for automated

task orchestration. The process consists of four steps:

Step 1: Developers perform a Push or Merge in the code repository, triggering the CI pipeline.

Step 2: Jenkins pulls the latest code and invokes the containerized model service to perform syntax parsing and

semantic encoding of the source code.

Step 3: The encoded features are sent via RESTful API to the detection engine, which executes defect classification

and localization model predictions.

Step 4: The system converts the detection results into a structured JSON file and generates feedback through the

GitLab Note API or email system, annotating the specific defective lines and possible causes.

Meanwhile, the system can enable an incremental detection mechanism based on project configuration, analyzing

35

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

only the newly added or modified code within the Diff region to improve processing efficiency and reduce resource

consumption [5]. At the end of the CI process, detection logs are written to a unified database and combined with

Prometheus for metric collection, facilitating subsequent monitoring and iterative training. To support cross-

language projects, the workflow integrates an automatic language identification module that dynamically selects

the AST parser and semantic model sub-network.

4. EXPERIMENTAL DESIGN AND EVALUATION

4.1 Dataset Selection and Experimental Environment

The experiments selected two representative public code-defect datasets: the CodeXGLUE-Defect Detection

subset and the Devign dataset. CodeXGLUE is sourced from multiple real-world open-source projects, covering

mainstream languages such as C, C++, and Java, and includes labels for coding-style errors, logic vulnerabilities,

and boundary-handling defects, offering diversity and broad coverage. Devign focuses on security-related defect

detection; all samples are labeled as secure/insecure for binary classification, making it suitable for specialized

testing of security-defect identification capabilities. The data-preprocessing stage involves syntax parsing,

semantic encoding, and graph construction, with a unified encoding format that fuses BPE token sequences and

AST graph embeddings.

The experimental environment is configured as follows: the operating system is Ubuntu 22.04, the deep-learning

framework is PyTorch 2.0, and both model training and inference are performed on an NVIDIA RTX 4090 GPU

with 24 GB of VRAM, supporting mixed-precision training. Code version management and automated integration

deployment are handled by GitLab CI. All experiments use five-fold cross-validation to ensure stable and

generalizable evaluation results.

4.2 Comparative Experiment Setup

The comparison baselines are divided into three categories: (1) traditional machine-learning methods, such as

SVM and Random Forest with TF-IDF features, representing shallow static analysis; (2) classic deep models,

including Bi-LSTM and Code2Vec, used to verify the effectiveness of sequential semantic encoding; and (3)

current mainstream pre-trained models, such as CodeBERT and GraphCodeBERT, which excel at structure–

semantic modeling. Under a unified training strategy, all models share a learning rate of 1e-4, batch size of 32,

maximum epochs of 50, and the AdamW optimizer. Evaluation metrics include Accuracy, Precision, Recall, F1-

score, and average detection Latency, comprehensively reflecting both detection accuracy and inference

performance. To assess real-time deployment, all models are integrated into the CI pipeline, collecting actual

runtime latency and resource-usage data.

4.3 Results Analysis

Experimental results show that the proposed “graph structure + semantic encoding + dual-task detection” model

significantly outperforms existing methods on multiple metrics, especially for logic- and structure-related defects,

as shown in Table 1.

Table 1: Performance comparison with traditional models on CodeXGLUE and Devign

Name Accuracy (%) Precision (%) Recall (%) F1-score (%) Mean (ms)

TF-IDF + SVM 72.3 68.4 65.1 66.7 80

Bi-LSTM 79.1 75.2 78.9 77 340

Code2Vec 82.5 80.3 79.6 79.9 310

CodeBERT 88.6 86.7 87.1 86.9 295

GraphCodeBERT 90.2 88.4 89.3 88.8 285

Method 92.1 89.5 93.2 91.7 270

On the CodeXGLUE dataset, the proposed model achieves an F1-score of 91.7%, a 23.6-point improvement over

the traditional TF-IDF+SVM approach; on the Devign security-defect task, the recall reaches 93.2%, effectively

reducing missed reports of low-frequency defects. Detection latency is kept below 270ms, meeting the rapid-

iteration demands of CI workflows. From the false-positive perspective, precision remains above 89%,

demonstrating strong suppression of redundant reports. Leveraging graph-neural structures to enhance cross-

function dependency understanding and semantic encoding to capture contextual features, the model maintains

36

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

stable recognition across diverse complex-defect scenarios.

5. CONCLUSION

This paper presents a deep-learning-based automated software-defect detection system that fuses graph neural

networks with pre-trained models to build a structure- and semantics-co-driven detection framework, achieving

high accuracy and low latency in real-world deployments. Future work can extend cross-language transferability,

refine low-frequency-defect recognition, and explore integration with automated repair systems to realize an

intelligent closed loop of detection and repair.

REFERENCES

[1] Hu, Xiao. "Learning to Animate: Few-Shot Neural Editors for 3D SMEs." (2025).

[2] Tan, C., Gao, F., Song, C., Xu, M., Li, Y., & Ma, H. (2024). Proposed Damage Detection and Isolation from

Limited Experimental Data Based on a Deep Transfer Learning and an Ensemble Learning Classifier.

[3] Zhang, Jingbo, et al. "AI-Driven Sales Forecasting in the Gaming Industry: Machine Learning-Based

Advertising Market Trend Analysis and Key Feature Mining." (2025).

[4] Zhang, X. (2024). Research on Dynamic Adaptation of Supply and Demand of Power Emergency Materials

based on Cohesive Hierarchical Clustering. Innovation & Technology Advances, 2(2), 59–75.

https://doi.org/10.61187/ita.v2i2.135

[5] Yang, J., Wang, Z., & Chen, C. (2024). GCN-MF: A graph convolutional network based on matrix

factorization for recommendation. Innovation & Technology Advances, 2(1), 14–26.

https://doi.org/10.61187/ita.v2i1.30

[6] Zhou, J., & Cen, W. (2024). Investigating the Effect of ChatGPT-like New Generation AI Technology on

User Entrepreneurial Activities. Innovation & Technology Advances, 2(2), 1–20.

https://doi.org/10.61187/ita.v2i2.124

[7] Zhang, Yujun, et al. "MamNet: A Novel Hybrid Model for Time-Series Forecasting and Frequency Pattern

Analysis in Network Traffic." arXiv preprint arXiv:2507.00304 (2025).

[8] Peng, Qucheng, Ce Zheng, Zhengming Ding, Pu Wang, and Chen Chen. "Exploiting Aggregation and

Segregation of Representations for Domain Adaptive Human Pose Estimation." In 2025 IEEE 19th

International Conference on Automatic Face and Gesture Recognition (FG), pp. 1-10. IEEE, 2025.

[9] Zhang, X. (2024). Research on Dynamic Adaptation of Supply and Demand of Power Emergency Materials

based on Cohesive Hierarchical Clustering. Innovation & Technology Advances, 2(2), 59–75.

https://doi.org/10.61187/ita.v2i2.135

[10] Zhou, Z. (2025). Research on Software Performance Monitoring and Optimization Strategies in

Microservices Architecture. Artificial Intelligence Technology Research, 2(9).

[11] We, X., Lin, S., Pruś, K., Zhu, X., Jia, X., & Du, R. (2025). Towards Intelligent Monitoring of Anesthesia

Depth by Leveraging Multimodal Physiological Data. International Journal of Advance in Clinical Science

Research, 4, 26–37. Retrieved from https://www.h-tsp.com/index.php/ijacsr/article/view/158

[12] Zhang, Wenqing, et al. "Enhancing Logical Reasoning in Large Language Models via Multi-Stage Ensemble

Architecture with Adaptive Attention and Decision Voting." Proceedings of the 2024 5th International

Conference on Big Data Economy and Information Management. 2024.

[13] Zheng, Y., Zhou, G., & Lu, B. (2023). Rebar Cross-section Detection Based on Improved YOLOv5s

Algorithm. Innovation & Technology Advances, 1(1), 1–6. https://doi.org/10.61187/ita.v1i1.1

[14] Zhao, X., Zhang, L., & Hu, Z. (2023). Smart warehouse track identification based on Res2Net-

YOLACT+HSV. Innovation & Technology Advances, 1(1), 7–11. https://doi.org/10.61187/ita.v1i1.2

[15] Huang, X., Lin, Z., Sun, F., Zhang, W., Tong, K., & Liu, Y. (2025). Enhancing Document-Level Question

Answering via Multi-Hop Retrieval-Augmented Generation with LLaMA 3. arXiv preprint

arXiv:2506.16037.

37

