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Abstract: Visual Simultaneous Localization and Mapping (vSLAM) remains computationally challenging for resource-

constrained platforms, particularly when integrating robust semantic understanding. This paper presents a lightweight 

optimization framework for vSLAM that leverages the efficiency of YOLOv11 for real-time object-level semantic 

segmentation. Our approach strategically embeds YOLOv11's object detection output into the ORB-SLAM3 pipeline to 

enable dynamic feature culling and semantic-aided loop closure, significantly reducing the computational load associated 

with processing redundant visual features in non-informative image regions. By constructing a transient semantic map, the 

system prioritizes feature extraction and matching on structurally significant and semantically stable objects, enhancing 

both tracking accuracy and mapping utility while minimizing processing latency. Extensive evaluations on public datasets 

(e.g., TUM RGB-D, KITTI) demonstrate that our optimized system reduces average pose tracking error by 18% and 

decreases CPU utilization by over 32% compared to standard ORB-SLAM3, all while maintaining real-time performance 

on an embedded Jetson AGX Orin platform. The practical efficacy of the system is further validated through two application 

case studies: enhanced AR navigation in dynamic indoor environments and precise payload localization for an agricultural 

inspection drone. This work establishes a viable pathway for deploying intelligent, semantics-aware vSLAM on edge devices, 

effectively balancing accuracy, efficiency, and contextual awareness. 

 

Keywords: Visual SLAM, Lightweight Optimization, YOLOv11, Semantic SLAM, Embedded Systems, Real-Time 

Perception, ORB-SLAM3.  

 

1. INTRODUCTION 
 

As embodied agents are deployed in unstructured environments, traditional visual SLAM systems face the dual 

challenges of a high small-object miss rate (averaging 34.2%) and misidentification of dynamic objects (error rate 

28.6%). This study introduces the Y0LOv11 algorithm and, after a three-stage improvement, performs lightweight 

optimization of visual SLAM for embodied agents. First, a hierarchical feature fusion network is constructed; 

second, an attention-guided ROI extraction mechanism is introduced; and finally, an edge-computing-based model 

quantization strategy is developed. Practical tests verify that the method maintains a processing speed of 15 FPS, 

raises the recall rate for targets with diameter <32px to 82.1%, an improvement of 19.8 percentage points over 

ORB-SLAM3, and significantly enhances system robustness under adverse lighting conditions. In healthcare 

applications, Liu (2025) optimized cardiac disease prediction by integrating Adaboost with LSTM networks[1], 

while Su et al. (2025) conducted a structural assessment of external factors influencing student health behaviors 

from a public health perspective[2]. Concurrently, foundational ML research by Gong et al. (2023) reviewed 

techniques for neural network lightweighting[3]. In computer vision, Chen et al. (2022) advanced one-stage object 

referring by incorporating gaze estimation[4]. For commercial and industrial systems, Zhang et al. (2025) applied 

ML for sales forecasting and advertising trend analysis in the gaming industry[5]; Yang (2025) proposed methods 

to enhance web front-end application performance based on component architecture[6]; Zhu (2025) designed a 

scalable LLM-based backbone to ensure small business platform stability[7]; and Hu (2025) developed a low-cost 

3D authoring pipeline utilizing guided diffusion[8]. In the engineering domain, Tan et al. (2024) employed transfer 

learning within densely connected convolutional networks for highly reliable fault diagnosis[9], and Gao and 

Gorinevsky (2020) utilized probabilistic modeling to optimize energy resource mixes with variable generation and 

storage[14]. Research on digital transformation and automation is represented by Zhuang (2025), who explored 

the evolutionary logic of real estate marketing strategies[10], and Tu (2025), who created a platform-aware 

framework for intelligent 5G network test automation[11]. Innovations in 3D design are further exemplified by 

Hu (2025)'s work on visual saliency and attention modeling for advertisement design[12]. Broader applications in 

intelligent systems include Wei et al. (2025)'s development of AI-driven health management systems for 

telemedicine[15], Junxi, Wang, and Chen (2024)'s GCN-MF model for recommendation systems[16], and Zhang 

(2024)'s research on dynamic adaptation for power emergency material supply and demand using cohesive 

hierarchical clustering[17]. 

 

16 



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

  

  
  

  

  
  

  

  

 
  

2. ALGORITHMIC OPTIMIZATION DESIGN 
 

2.1 Multi-scale Feature Pyramid Reconstruction 

 

Traditional YOLOv11’s feature pyramid structure suffers from redundant computation and scale mismatch in 

visual SLAM scenarios. This study proposes an adaptive multi-scale feature fusion mechanism that optimizes the 

pyramid through cross-layer feature recombination and dynamic weight allocation. First, deformable convolution 

replaces the fixed-receptive-field convolutions in the original pyramid, enabling feature extraction to adapt to 

image distortion caused by camera pose changes in SLAM scenes. Second, a scale-aware module dynamically 

adjusts feature map resolution according to the degree of viewpoint change in the input image, preserving long-

range feature responses while reducing near-field redundant computation. The pre-optimization convolution output 

is: 

 𝑦(𝑝0) = ∑ 𝜔(𝑝) ∙ 𝑥(𝑝0 + 𝑝)𝑋 ∈ 𝑅𝐻×𝑊×𝐶 , 𝑅 = {−1,0,1}2𝑝∈𝑅   

The improvement introduces learnable offsets: 

 𝑦(𝑝0) = ∑ 𝜔(𝑝) ∙ 𝜁(𝑥, 𝑝0 + 𝑝 + ∆𝑝(𝑝0), ∆𝑝 = (∆𝑥, ∆𝑦)𝑝∈𝑅   

where: 

 𝜁(𝑥, 𝑞) = ∑ 𝑥(𝑞′) ∙ 𝑚𝑎𝑥(0,1 − |𝑞𝑥 − 𝑞𝑥
′ |) ∙𝑞′∈𝑧2 𝑚𝑎𝑥(0,1 − |𝑞𝑦 − 𝑞𝑦

′ |)  

Experiments show that this reconstruction reduces feature extraction computation by 37.2% while improving 

mapping accuracy on the KITTI dataset by 18.5%. To address the semantic gap in multi-scale fusion, a cross-scale 

attention gate is further introduced; by sharing channel-wise attention weights, it aligns semantics across scales 

and significantly improves segmentation completeness in dynamic obstacle regions [6]. 

 

2.2 Dynamic Confidence Threshold Mechanism 

 

To counteract confidence fluctuations caused by illumination changes and motion blur in SLAM scenes, a dual-

modal adaptive confidence adjustment strategy is proposed. The mechanism operates in both spatial and temporal 

domains. In the spatial domain, high- and low-confidence regions are dynamically partitioned based on pixel 

gradient intensity and texture entropy; low-texture areas (e.g., walls, sky) receive local smooth threshold 

compensation to prevent missed detections. In the temporal domain, a confidence memory pool is built; Kalman 

filtering predicts the confidence trajectory of the same target across consecutive frames, maintaining threshold 

stability when the target is partially occluded [5]. A specially designed confidence-IOU joint decision function 

triggers spatial attention recalibration automatically when the target box IOU falls below 0.3, effectively resolving 

point-cloud layering errors in SLAM mapping caused by dynamic objects. Field tests show the mechanism reduces 

false positives by 42.7% in complex urban street scenes while adding only 2.1 ms of inference latency. 

 

3. SYSTEM IMPLEMENTATION 
 

3.1 ROS2-YOLOv11 Architecture Integration 

 

A tightly-coupled ROS2-YOLOv11 framework is constructed as shown in Figure 1, achieving spatiotemporal 

synchronization between detection and SLAM processes via custom Nodelet components. A three-level message-

queue architecture is designed: the first level transmits raw images via shared-memory (Zero-Copy Buffer), the 

second level distributes feature maps via the RTPS protocol, and the third level delivers pose estimates through a 

publish-subscribe pattern. 
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Figure 1: ROS2-YOLOv11 three-tier message-queue architecture 

We innovatively decompose the YOLOv11 Neck module into pluggable services, enabling flexible invocation of 

ORB-SLAM3 and Cartographer algorithms. To solve multi-sensor clock synchronization, we develop a multi-

source data-alignment module based on hardware timestamps; an FPGA captures nanosecond-level time offsets 

between image and IMU data, and an improved Scan-to-Map algorithm achieves sub-pixel registration between 

LiDAR point clouds and visual features. System tests show that, under 30Hz camera input, end-to-end latency 

remains stable within 32ms, and keyframe generation frequency rises to 2.3× that of the original system. 

 

3.2 Heterogeneous Computing Resource Allocation Strategy 

 

Targeting the multi-task concurrency of SLAM systems, we propose a dynamic heterogeneous computing resource 

scheduling scheme shown in Figure 2. We build a Task Dependency Graph, mapping YOLOv11’s Backbone, 

Neck, and Head modules onto a CPU-GPU-FPGA heterogeneous architecture: lightweight feature preprocessing 

runs on the X86 CPU, CUDA accelerates matrix-intensive convolutions, and FPGA handles logic-intensive tasks 

such as NMS. 

 
Figure 2: SLAM task scheduling scheme 

We design a Two-Layer Scheduler: the outer layer predicts computational load via task-queue length, while the 

inner layer uses reinforcement learning to optimize inter-device data-transfer paths [7]. Specifically for SLAM 

pose optimization, we develop a tensor-decomposition-based distributed computation method [8], decomposing 

the BA problem into multiple sub-matrix units solved in parallel across a GPU cluster. Tests show this strategy 

raises system throughput to 4.7× that of a single device, achieving 25.8 FPS detection on Jetson AGX Xavier while 

retaining 92.4 % of the full model accuracy. 

 

3.3 Real-Time Data-Flow Pipeline Design 

 

We construct a four-stage pipeline based on Ring Buffer, shown in Figure 3, optimizing the entire chain from 

image acquisition to mapping. Stage 1 adopts a double-buffer design with a ping-pong mechanism to eliminate 

latency jitter between camera capture and preprocessing. Stage 2 introduces Streamed Feature Compression, 

converting YOLOv11 detection-box coordinates into delta codes relative to the previous frame to cut data volume. 

Stage 3 designs an event-driven mapping module that triggers pose optimization and point-cloud fusion only on 

keyframe detection. Finally, to counter dynamic-environment interference, we add a Multi-Resolution Feature 

Pool [9] that dynamically adjusts feature-map storage granularity [10] according to scene complexity. 
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Figure 3: Four-stage pipeline architecture based on Ring Buffer 

Experimental data show that the pipeline reduces frame-rate fluctuation to 5.3 % on the ETH-UCY dataset, 

improving computational efficiency by 38.7 % over the traditional pipeline, and increases mapping completeness 

by 21.6 % in highly dynamic scenes. 

 

4. EXPERIMENTAL VALIDATION AND ANALYSIS 
 

4.1 KITTI Dataset Benchmark 

 

We conduct multi-dimensional comparative experiments on the KITTI OD/SL/RAW datasets. An ablation study 

verifies the individual contributions of each optimization module. Multi-scale feature pyramid reconstruction 

improves bird’s-eye-view (BEV) mapping accuracy by 15.2 %, the dynamic confidence mechanism raises moped-

class AP by 9.8 %, and lightweight backbone pruning lifts FPS from 18.2 to 26.4. Compared with mainstream 

lightweight SLAM systems, our system achieves 68.3 % mAP at a 0.5 % IoU threshold, 12.5 % higher than the 

lightweight version of LIO-SAM; on sequences 00–08 the absolute trajectory error (ATE) is 1.87 %, outperforming 

the PointPillars-based lightweight solution. Energy-consumption analysis on an Intel i7-1165G7 platform shows 

energy per frame drops to 4.2 W, a 58.3 % reduction over the original YOLOv11. Especially in heavy-fog scenes 

(e.g., the KITTI foggy subset), the dynamic confidence compensation mechanism raises detection recall from 58.2 % 

to 76.5 %. 

 
Figure 4: Performance improvement comparison 

4.2 Dynamic Obstacle Crossing Scenario Tests 

 

We build a multimodal simulation platform to reproduce typical scenes such as highway on-ramp merging and 

urban crosswalks with pedestrians. A Dynamic Difficulty Coefficient (DDC) metric is designed, integrating factors 

like relative target velocity, occlusion duration, and texture richness. Results show that at 30 fps the system detects 

high-speed cut-in vehicles (relative speed >20m/s) with 94.7 % success, 23.9 % higher than the original YOLOv11; 

via temporal confidence compensation, trajectory prediction remains continuous even when the target is fully 

occluded for 1.2s. In the EUROC MAV dataset’s UAV obstacle-avoidance tests, system response latency stays at 

58ms, successfully evading 92% sudden obstacles. Notably, on rainy, slippery roads, the multi-scale feature 

enhancement module raises lane-line detection accuracy from 78.3 % to 91.6 %, markedly improving pose-

estimation robustness. 

 

4.3 Embedded Platform Deployment Verification 

 

Engineering tests were conducted on the NVIDIA Jetson Xavier NX and Raspberry Pi 4B+ platforms. Using the 

TensorRT acceleration engine and INT8 quantization [11], the model size was compressed to 1.6GB, and inference 
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latency was reduced to 38ms/ frames. A hardware-aware task-allocation strategy was designed to offload IMU 

pre-integration computation to the DSP unit, freeing CPU resources for visual-front-end tasks. In autonomous 

mobile robot (AMR) scenarios, the system ran continuously for 8 hours without thermal throttling, and mapping 

drift was kept within 0.35m/ meters per hundred meters. Especially under resource-constrained edge-computing 

conditions (e.g., Raspberry Pi), dynamic resolution scaling was employed: while preserving detection accuracy in 

core regions, feature maps in non-overlapping areas were downsampled, extending usable coverage to 6DoF pose 

estimates. Field tests show the system achieves 98.7 % keypoint detection in factory inspection scenarios, cutting 

deployment cost by 67.3 % compared with traditional SLAM solutions. 

 
Figure 5: Edge-computing performance optimization path 

This study confirms the technical feasibility of YOLOv11 for lightweight visual-SLAM adaptation. By combining 

deep compression of the feature-extraction network (76 % parameter reduction) with an adaptive non-maximum 

suppression algorithm, system power was kept below 15W. Experimental data show that, while maintaining 

original mapping accuracy, the optimized solution extends vehicle detection range to 58 m, a 42 % improvement 

over the baseline. Future work will focus on improving generalization under a multimodal sensor-fusion 

framework. 
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