

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

EDA Technology in Digital Circuit Design: A

Study on Application Methodologies

Liu Ya

School of Electronic Information Engineering, Jiangxi University of Engineering, Xinyu 338000, Jiangxi, China

Abstract: Digital circuit design is a crucial foundational element of modern electronic engineering, and the application of

EDA technology provides efficient, automated development methods, demonstrating significant advantages especially in

FPGA design. This paper focuses on the practical application of EDA technology in digital circuit design, emphasizing

optimization strategies such as standardizing design languages, strengthening timing control, streamlining resource

structures, and refining simulation mechanisms. By integrating specific design cases, it analyzes the supporting role of

EDA tools in modeling, synthesis, placement, and verification, promoting more efficient and reliable FPGA circuit

development and comprehensively enhancing digital system performance.

Keywords: Digital circuit design; EDA technology; FPGA; Automated design.

1. INTRODUCTION

The 14th Five-Year National Informatization Plan calls for accelerating breakthroughs in core foundational

technologies such as integrated circuits, key electronic components, and EDA tools to build a self-controlled

digital technology system. Under this guidance, the electronic information sector has placed higher demands on

efficient and precise digital circuit design tools. Especially in FPGA development and application, improving

design automation levels and optimizing development processes have become key directions for industry

development. Driven by policy, the deep integration and engineering implementation of EDA technology have

become critical issues in practice.

2. OVERVIEW OF EDA TECHNOLOGY

EDA technology, short for Electronic Design Automation, is an essential tool for modernizing and automating

digital circuit design. Its core role is to leverage computer-aided design platforms to transform the traditionally

manual drawing and verification of complex circuit design processes into streamlined, modular workflows,

thereby greatly improving design efficiency. In digital circuit development, EDA technology covers multiple key

stages, from early logic function modeling and hardware description language design, through mid-stage logic

synthesis and timing analysis, to later placement and routing, functional simulation, and circuit testing. Through

the collaborative action of various software tools, EDA technology can effectively manage the entire design flow,

reduce design redundancy, avoid logic errors, and enhance circuit stability and resource utilization. Foundational

progress in multimodal and 3D representation learning is exemplified by the work of Peng et al. (2025), who

introduced 3D Vision-Language Gaussian Splatting[1]. In robotics and system architecture, Guo (2025) explored

deterministic AI for optimal robotic trajectory control[2], while Zhou (2025) investigated performance monitoring

and optimization within microservices architectures[3]. The healthcare sector has seen substantial AI-driven

innovation, with Wei et al. (2025) developing intelligent health management systems for telemedicine[4], We et al.

(2025) leveraging multimodal data for intelligent anesthesia depth monitoring[5], and Liu (2025) optimizing

cardiac disease prediction models by integrating Adaboost with LSTM networks[11]. Concurrently, a strong

research focus is on enhancing the capabilities of Large Language Models (LLMs). Zhang et al. (2024) proposed a

multi-stage ensemble architecture with adaptive attention to boost logical reasoning[6], and Huang et al. (2025)

enhanced document-level question answering through multi-hop retrieval-augmented generation[9]. Specialized

applications of attention and fine-tuning mechanisms are also prominent, as seen in Zhang et al. (2025)'s use of

dynamic cross-attention for fine-grained image captioning in advertising[7], Zhang et al. (2025)'s application of

LLaMA-based meta-attention networks for automated essay assessment[8], and Wang and Bi (2025)'s hierarchical

adaptive framework for multi-task learning in large-scale models[10]. Finally, from a public health informatics

perspective, Su et al. (2025) conducted a structural assessment of familial and educational influences on student

health behaviors[12].

6

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

3. ANALYSIS OF FPGA DIGITAL CIRCUIT DESIGN FLOW

The FPGA digital-circuit design flow is a highly systematic technical process, typically composed of several

sequential stages that are tightly linked and indispensable. The entire flow generally begins with requirement

analysis and circuit modeling of the logical functions, using a hardware description language to express the target

functionality clearly and form an initial logic design. It then proceeds to functional simulation to verify whether the

logic description is accurate and to ensure that the basic functions operate correctly under ideal conditions. After

confirming the logic is correct, the design enters the synthesis stage, where tools automatically convert the logic

description into a gate-level structure and optimize it according to the specific device resources. Next comes

placement and routing, where the system performs the actual physical layout based on chip resources and timing

requirements so that the logical functions can be realized in the target device. On this basis, static timing analysis is

also required to evaluate whether the design meets the operating frequency and data-stability requirements,

ultimately generating a configuration file that is downloaded into the FPGA chip and entering the actual testing

phase.

4. FPGA DIGITAL-CIRCUIT DESIGN OPTIMIZATION STRATEGIES BASED ON

EDA TOOLS

4.1 Standardize the Design Language to Improve Modeling Efficiency

The accuracy and standardization of the design language directly affect the efficiency of the FPGA digital-circuit

modeling phase, making it especially critical at the project’s outset. Adopting a hardware description language that

is structurally clear and semantically explicit can establish a stable logic-model foundation early in system design,

providing strong support for subsequent development stages [1]. Consistent syntax, standardized module

invocation, and systematic naming help EDA tools recognize each functional module, thereby reducing analysis

errors and redundant logic. At the same time, maintaining a reasonable language-level hierarchy during design

effectively separates control logic from data paths, facilitating later debugging. In addition, good coding style can

improve module reusability, lower the cost of repetitive work, and make the entire design process more efficient

and clearer.

Using Verilog as an example, when creating an 8-bit counter module, the designer should adopt a clear structural

partitioning, properly arrange input and output ports, and explicitly define the logical relationships of control

signals such as clock and reset. At the beginning of the design, establish a unified naming convention—for

instance, name all clock signals clk and all reset signals rst_n—so that EDA tools can accurately identify module

functions during logic synthesis and place-and-route, reducing compilation errors caused by naming conflicts or

ambiguities between modules. In module design, coding style is equally important. Consistent indentation and

clear comments improve code readability, facilitating later maintenance and team collaboration. For example,

when using an always block to control states, employ a case statement to clarify the transition logic between states

and add concise comments after each state to quickly locate the logic flow during simulation. Once the design is

complete, use the syntax check or preliminary synthesis features of EDA tools like Quartus or Vivado to

immediately detect potential issues such as undefined signals, uninstantiated modules, or missing sensitivity lists,

thereby avoiding functional failures at an early stage. When interconnecting modules later, if the interface naming

is standardized and the structure is clear from the outset, the difficulty of writing the top-level file is significantly

reduced, and interface-matching errors during module invocation are minimized. For instance, when connecting an

SPI communication module to a main control module, because both follow the same naming format, the interface

call becomes straightforward and clear, eliminating the need to repeatedly check port definitions and effectively

shortening the development cycle. Moreover, as project scale grows and the number of logic modules increases, a

disciplined language structure also enables EDA tools to quickly analyze the project hierarchy, automatically

optimize resource allocation during synthesis and place-and-route, and reduce unnecessary logic duplication.

Taking a timing control system composed of multiple counter modules as an example, if each module is developed

following the same format, it can be instantiated and reused directly, greatly reducing code volume and improving

overall design efficiency.

4.2 Strengthen Timing Control to Ensure Logic Stability

In FPGA digital-circuit development, the precision of timing control directly determines the stability of system

logic operation, so it must be treated as a core concern. The timing-analysis features in the EDA tool platform

7

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

require accurate design constraints as their foundation; only then can they evaluate the delay of each signal path

under the actual operating frequency [2]. To achieve the intended performance, the clock frequency should be set

appropriately while maintaining a balance between setup time and hold time—an essential prerequisite for stable

synchronous-logic operation. If timing details are overlooked during design, the circuit may suffer logic errors at

edge-triggering moments, leading to overall system malfunction. To strengthen timing optimization effectively,

designers should plan primary and secondary clock relationships in advance, avoiding resource contention and

signal aliasing, thereby stabilizing data transfer among core modules.

Take the design of a pulse-width-modulation controller as an example: this module must precisely adjust the duty

cycle at high frequency. During design, the first step is to set the primary clock constraint in an EDA tool such as

Vivado—for instance, specifying the system clock as and defining the clock period as 20 ns—so that the

tool can apply rigorous timing analysis to all paths during synthesis and place-and-route. Next, in logic

construction, the designer must partition the combinational logic between the counter and the comparator to avoid

overly long paths. Pre-registering part of the logic or splitting it into multi-cycle operations can effectively shorten

critical paths and increase timing slack. In one test, if the combinational-logic delay within a 20 ns period reaches

18 ns, the EDA tool will flag a timing violation. At this point, the designer can insert registers along the critical

path or use pipelining to distribute the logic operations, reducing the delay of each stage to below 10 ns and

successfully meeting timing requirements. Another key strategy is handling multi-clock-domain data exchange. In

a system that includes ADC acquisition and DMA transfer, the ADC module operates under the 80MHz sampling

clock, while the DMA module uses the 100MHz system clock. Because cross-clock-domain transfers exist,

dual-flip-flop synchronizers or asynchronous FIFOs must be added to prevent data metastability or signal loss. The

EDA tool can automatically identify cross-domain paths and mark synchronization risks in the timing report,

alerting the designer to optimize the structure. Using the waveform-simulation tool ModelSim to analyze the

transfer results, one can observe whether the edges of the synchronized signals are stable and verify the reliability

of the synchronization scheme. Ultimately, the system can operate stably under the different module clocks, with

data transferred accurately, thereby improving overall immunity to interference and logical rigor.

4.3 Streamline Resource Structure and Optimize Device Placement

Rational allocation and scheduling of FPGA internal resources is a key way to boost circuit-design performance,

so it must be planned holistically from the very start. When using EDA tools to analyze the architecture, special

attention should be paid to eliminating unnecessary logic blocks and control units, thereby preventing routing

congestion or sluggish operation caused by redundant resources. At the same time, structural streamlining covers

not only the control of gate count but also the judicious arrangement of hardware resources such as LUTs, registers,

and memory blocks [3]. Moreover, replacing duplicated units with versatile multi-function modules helps reduce

device load and further increases layout compactness. During the actual placement phase, EDA tools map devices

according to resource distribution and logical relationships; if the logic structure is chaotic, critical modules may

end up scattered, raising interconnect complexity and signal delay. On the other hand, efficient resource planning

not only lowers system power consumption but also markedly improves overall chip utilization, making the system

run more compactly.

Take a four-channel data acquisition module as an example. In the initial design, each channel was equipped with

its own buffer, controller, and memory interface, causing severe duplication of logic blocks. The EDA synthesis

report showed that LUT and register utilization was near the upper limit; during placement and routing,

unreasonable module distribution led to routing congestion and timing violations. Using the resource-analysis

feature of the EDA tool, the designer discovered that several sub-modules were not active simultaneously within

the same clock cycle. Consequently, identical functional logic structures were unified into a configurable

multiplexer module, employing shared control logic to create time-division access for the different channels. After

the change, logic-cell usage dropped by 30 %, routing resources were freed, and system frequency rose by 20 %,

markedly improving design performance. In the development of an image-recognition system, to perform

sliding-window processing, the designer built a large number of redundant shift-register chains. The EDA report

indicated extremely high register usage and highly similar functional logic across multiple modules. During

optimization, the sliding window was redesigned as a parameterized module, its structure unified with for-generate

statements, while multiple independent serial/parallel register structures were merged into a shared buffer area,

eliminating duplicated logic. After the adjustment, the EDA tool relocated the originally scattered logic modules to

adjacent locations, greatly shortening wire length, stabilizing signal transmission, and maintaining data-output

accuracy in simulation; system power consumption also decreased. Moreover, in the design of a

serial-communication controller, the state machine and baud-rate generator were initially placed far apart, and the

8

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

EDA placement report flagged a cross-region critical path. To improve layout compactness, the designer employed

the area-constraint feature provided by the EDA tool to confine related logic within a specified region, achieving

logic concentration and interconnect optimization. In the final design, critical-path delay was reduced by 15 %,

effectively eliminating timing risks caused by dispersed placement.

4.4 Refine the Simulation Mechanism to Improve Verification Accuracy

In FPGA digital-circuit development, simulation verification is the key step for ensuring functional correctness;

therefore, the design flow should prioritize building a complete verification framework. The simulation platform

provided by EDA tools must be highly compatible with the chosen design language so that every signal transition

can be tracked accurately and the validity of logical judgments can be enhanced [4]. From a holistic perspective, a

well-rounded simulation mechanism should cover functional simulation, timing simulation, boundary testing, and

more, so that the system’s stability under diverse operating conditions can be examined. At the initial design stage,

establishing a unified, standardized testbench and clearly defining the relationships between input and output

signals facilitates consistent comparison in later verification. When further optimizing the simulation flow, test

phases and verification cadence should be set rationally, advancing layer by layer to detect potential logic defects

effectively. Moreover, by means of waveform recording and timing tracing, abnormal data exchanges between

modules can be located quickly, thereby reducing the time spent on repeated tests.

Take the design of a UART serial-communication module as an example. The module includes sub-modules such

as a receiver, a transmitter, parity checking, and state control. At the beginning of the design, the EDA tool

ModelSim is used to build the simulation platform; a top-level testbench is written, clock signals, reset logic, and

input stimuli are defined, and observation points are set on the output signals. During functional simulation, a set of

standard test vectors is applied, and the output waveforms are checked against expectations. In one test, the

receiver exhibited a data-bit shift; analysis revealed that the state-transition decision was delayed. After adjusting

the relevant logic and re-simulating, the waveform returned to normal, the received data matched the transmitted

data exactly, and functional verification passed. In the subsequent timing-simulation phase, the designer generated

a gate-level netlist with the EDA tool and combined it with a delay model for verification. In another SPI master

module design, simulation showed that data output lagged behind the clock rising edge, preventing the receiver

from correctly recognizing the data. By shifting the data-latch position and outputting the data one clock cycle

earlier, the timing alignment was restored, data transmission completed correctly, and the verification result met

the specification. To further improve simulation completeness, assertions were added; when a data-write anomaly

occurs, the simulation halts automatically and records the error point, allowing rapid problem location. During

system integration, to avoid test omissions, the coverage-analysis feature of the EDA tool is used to count how

many functional paths have been triggered. For example, when designing a digital-filter module, the initial

simulation only verified intermediate input values, leaving boundary cases uncovered. The designer supplemented

tests with maximum and minimum inputs; after re-simulation, the filter output remained stable, confirming that the

module operates correctly across the entire input range. In addition, waveform-comparison tools can be used to

contrast logic changes before and after optimization, ensuring that functionality is not broken after structural

modifications and thereby improving verification efficiency.

5. CONCLUSION

In summary, the application of EDA technology in FPGA digital circuit design has become a key means of

improving design efficiency, optimizing system performance, and ensuring functional reliability. In the future, as

circuit scales continue to expand and application scenarios become increasingly complex, EDA tools will further

evolve toward greater intelligence and integration. Designers should continuously master advanced tool

capabilities, refine design strategies, and drive digital circuit design toward higher performance, greater precision,

and even stronger stability, providing solid technical support for the development of electronic information

engineering.

FUNDING:

Provincial Science and Technology Project: No. 171179, titled “Design and Implementation of Photoelectric

Switches in Automatic Monitoring Systems”; University Teaching Reform Project: No. 2020-JGJG-27, titled

“Exploration and Implementation of Online + Offline Blended Teaching Based on Network Teaching Platforms”.

9

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 11, 2025Volume 4 Issue 12, 2025

REFERENCES

[1] Peng, Q., Planche, B., Gao, Z., Zheng, M., Choudhuri, A., Chen, T., Chen, C. and Wu, Z., 3D

Vision-Language Gaussian Splatting. In The Thirteenth International Conference on Learning

Representations.

[2] Guo, Y. (2025). The Optimal Trajectory Control Using Deterministic Artifi cial Intelligence for Robotic

Manipulator. Industrial Technology Research, 2(3).

[3] Zhou, Z. (2025). Research on Software Performance Monitoring and Optimization Strategies in

Microservices Architecture. Artificial Intelligence Technology Research, 2(9).

[4] Wei, Xiangang, et al. "AI driven intelligent health management systems in telemedicine: An applied research

study." Journal of Computer Science and Frontier Technologies 1.2 (2025): 78-86.

[5] We, X., Lin, S., Pruś, K., Zhu, X., Jia, X., & Du, R. (2025). Towards Intelligent Monitoring of Anesthesia

Depth by Leveraging Multimodal Physiological Data. International Journal of Advance in Clinical Science

Research, 4, 26–37. Retrieved from https://www.h-tsp.com/index.php/ijacsr/article/view/158

[6] Zhang, Wenqing, et al. "Enhancing Logical Reasoning in Large Language Models via Multi-Stage Ensemble

Architecture with Adaptive Attention and Decision Voting." Proceedings of the 2024 5th International

Conference on Big Data Economy and Information Management. 2024.

[7] Zhang, W., Shih, K., Jin, Y., Chen, Z., Liu, L., & Zhang, Z. (2025, January). Dynamic Cross-Attention and

Multi-Level Feature Fusion for Fine-Grained Image Captioning in Advertising. In 2025 5th International

Conference on Neural Networks, Information and Communication Engineering (NNICE) (pp. 282-286).

IEEE.

[8] Zhang, D., Fu, J., Zheng, J., Deng, Z., & Yang, Z. (2025). Maximizing Scoring Divergence in Automated

Essay Assessment with LLaMA-Based Meta-Attention Networks.

[9] Huang, X., Lin, Z., Sun, F., Zhang, W., Tong, K., & Liu, Y. (2025). Enhancing Document-Level Question

Answering via Multi-Hop Retrieval-Augmented Generation with LLaMA 3. arXiv preprint

arXiv:2506.16037.

[10] Wang, Y., & Bi, X. (2025, January). Hierarchical Adaptive Fine-Tuning Framework for Enhancing

Multi-Task Learning in Large-Scale Models. In 2025 5th International Conference on Neural Networks,

Information and Communication Engineering (NNICE) (pp. 1582-1586). IEEE.

[11] Liu, C. (2025, January). Optimization of Adaboost cardiac disease prediction and classification based on long

and short term memory network. In 5th International Conference on Signal Processing and Machine Learning

(CONF SPML 2025) (Vol. 2025, pp. 196-200). IET.

[12] Su, Z., Yang, D., Wang, C., Xiao, Z., & Cai, S. (2025). Structural assessment of family and educational

influences on student health behaviours: Insights from a public health perspective. Plos one, 20(9),

e0333086.

10

