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Abstract: With the development of smart agriculture, field object detection has become a key component in improving
management efficiency. This paper proposes and implements a cloud-edge collaborative federated learning system for object
detection, using a field weed dataset as a case study. The system employs a federated learning framework to enable parallel
training across multiple edge devices and integrates the YOLOv11 model to perform collaborative training on several Jetson
Nano devices. To enhance global model performance and convergence speed, only model parameters that meet predefined
accuracy thresholds and pass a target filtering mechanism are uploaded to the cloud for aggregation. On the client side, a
PyQt5-based graphical user interface is developed to support inference on images, videos, and real-time camera feeds.In
the experimental evaluation, we compared federated training across multiple edge devices with centralized training on a
single device. The results show that federated learning outperforms centralized training across several key performance
metrics. Specifically, precision improved from 77.89% to 82.17%, recall increased from 72.25% to 73.56%, and mean
average precision (mAP) rose from 77.82% to 81.45%. These findings demonstrate that federated learning can significantly
enhance model accuracy and generalization while keeping data localized.
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1. INTRODUCTION

In recent years, agriculture worldwide has been progressively shifting toward intelligent and precision-based
practices. Traditional labor-intensive management approaches are often inefficient and susceptible to subjective
judgment. With the continuous refinement of computer vision and deep learning technologies, object detection
algorithms—particularly the YOLO series—have been extensively applied in agricultural production, exhibiting
excellent performance in tasks such as crop recognition and detection!!l. Recent studies have integrated YOLO-
based object detection algorithms into federated learning frameworks, such as the FedVision platform ?land the
FedDet system!*!. They have conducted preliminary explorations of multi-device collaborative training and object
recognition tasks.

However, most existing approaches rely on centralized deep learning frameworks, which require large volumes of
field image data to be uploaded to cloud servers for training. Due to limitations such as network bandwidth and
communication latency, these methods are often ill-suited for real-world agricultural deployments, where devices
are distributed across fields and computational resources are constrained. To address these challenges, this paper
adopts federated learning, a technique that enables each edge device to perform model training locally while only
uploading model parameters. Federated learning not only ensures data privacy but also significantly reduces
communication overhead, and has been widely adopted in data-sensitive domains such as healthcare, finance, and
security in recent years!*!’l. To further enhance computational and communication efficiency, an edge—cloud
collaborative architecture is introduced into the federated learning framework. In this architecture, edge devices
are responsible for local data processing and model training, while the cloud server handles model aggregation
and overall coordination!®!.

This paper proposes and implements a federated learning-based object detection system with edge—cloud
collaboration, specifically designed for farmland weed recognition scenarios. A graphical user interface (GUI) for

the client side is developed using PyQt5. The system integrates key technologies such as federated learning, edge—
cloud collaboration, and visual inference, offering strong practicality, deployability, and scalability.

2. Related Concepts and Theoretical Foundations
2.1 Cloud-Edge Collaboration

With the growing use of IoT and edge devices, traditional cloud-centric architectures face challenges like latency,
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privacy risks, and bandwidth limitations. Cloud-edge collaboration addresses these issues by combining cloud and
edge computing strengths. As shown in Figure 1, the cloud handles model aggregation and control, while edge
devices perform lightweight inference and local training. This distributed setup keeps data local and enables
synchronized model updates, improving efficiency, privacy, and scalability.
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Figure 1: Cloud-Edge Collaboration
2.2 Federated Learning

Traditional centralized deep learning requires uploading data to a central server, which risks privacy breaches in
sensitive scenarios. Federated learning offers an alternative by training models across distributed devices without
sharing raw data, enhancing privacy while maintaining strong performance.

One of the most well-known aggregation algorithms in federated learning is Federated Averaging (FedAvg). Its
core principle is to update the global model by performing a weighted average of the model parameters uploaded
by clients, based on the number of local data samples. The formula is as follows:

K

_ n ok
a)t+1 - Z n a)t
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Where: @, is the updated global model at round t+1, a)tk is the local model from k at round t,n is the number of

data samples on client k, 77 = Zk n, is the total number of samples across all clients.

3. System Design and Functionality

As shown in Figure 2, the system consists of three components: cloud, edge, and client. The cloud monitors training,
aggregates model parameters from edge devices, and distributes the updated global model. Edge devices perform
local training with their own data and upload updates. The client uses the aggregated model for inference on images,
videos, or live streams. This setup enables efficient, privacy-preserving distributed learning by combining cloud
and edge capabilities.
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Figure 2: System architecture and workflow

3.1 Cloud

In this system, the cloud functions as the central node of the federated learning architecture, with key
responsibilities including monitoring training metrics, aggregating model parameters, and distributing updated
models. A local cloud server is used in this study, which connects to the edge devices via a local area network
(LAN).

Before training begins, the cloud loads a pre-trained model as the initial global model to ensure that all clients start
the first round of federated learning with the same parameters. After completing local training, each edge device
uploads its updated model weights to a designated path in a shared directory. As part of the federated learning
workflow, the cloud repeatedly checks this directory during each training round. Aggregation only begins once
the required number of model files has been uploaded and at least two edge devices have successfully completed
training and uploaded their parameters.

After aggregating the models, the cloud saves the new global model as agg _model.pt. In the following round, this
updated model replaces the previous one on each edge device. Through continuous iterations, the model is
progressively refined with data from different edge nodes, ultimately resulting in a more robust and generalized
global model.

Throughout training, the MLflow experiment tracking platform is used to automatically log and visualize key
performance metrics—such as loss, mean Average Precision (mAP), precision, and recall—for each round. It also
periodically records system resource usage, including CPU and memory utilization, to monitor overall system
performance. Figure 3 shows the MLflow monitoring interface.
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Figure 3: Cloud-Side MLflow Monitoring Interface
3.2 Edge

In this study, three Jetson Nano BO1 edge devices were deployed for federated training. Each device is built on the
NVIDIA Jetson Nano BO1 development board, featuring a quad-core ARM Cortex-A57 CPU and a 128-core
CUDA GPU. The devices run Ubuntu 18.04 with PyTorch 1.10, and are connected via HDMI for display and M.2
wireless cards for networking. As key components of the federated learning framework, the edge devices handle
receiving model parameters, conducting local training, and uploading updated weights.

Each device trains a YOLOv11 model on its local dataset. Before training, it checks for a local "latest.pt’ model
file—if found, it is used; otherwise, the initial model "YOLOv11n.pt' is loaded from the shared cloud directory.
To ensure training quality, a threshold mechanism is applied. After each round, the model is evaluated based on
mAP50 and the number of detected classes. If mAP50>0.6 and the class count>3, the model is considered
qualified and uploaded. If mAPS50 falls within [0.2, 0.6] and classes within [2, 3], the training is repeated. If
mAP50 < 0.2 or classes <2, the model is discarded and not uploaded.

After uploading, each edge device enters a waiting phase and periodically checks the shared directory for a new
aggregated model. Once a new model is detected, it automatically downloads and replaces the previous version,
using it as the starting point for the next round of federated training. Each device uploads independently, enabling
decentralized yet collaborative model evolution, which enhances overall system intelligence.

The cloud and edge devices operate within the same local area network (LAN), avoiding cross-network
communication and ensuring efficient data transfer. Model exchange is managed through a shared directory: the
cloud’s shared folder is mounted on each Jetson Nano using the NFS protocol. Once mounted, devices can directly
access /cloud share/" to read the latest aggregated model ("agg model.pt’) or upload their locally trained models.
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Figure 4: Ede Device Hardware and Training Interface
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3.3 Client

In this system, the client is responsible for performing detection and recognition tasks on local images, videos, or
real-time camera feeds using the aggregated model produced through federated training on the cloud.

The client is deployed on a desktop computer and features a graphical user interface (GUI) built with PyQt5. As
shown in Figure 5, the interface is intuitive and user-friendly, allowing users to view detection results directly.
PyQt5 is a Python binding for the Qt framework that supports cross-platform development and provides a wide
range of UI components, making it well-suited for rapid desktop application development[’-],

The client interface includes the following features:

(1) Select Image: Load a local image containing weeds and perform detection using the latest model.

(2) Select Folder: Load a local folder of images and conduct weed detection on each image sequentially.

(3) Open Camera: Activate the local webcam to capture a live frame and perform weed detection.

(4) Image Display Area: Visually displays the detection results in real time.

(5) Export Data: Export the detection results (e.g., class, confidence score, and bounding box coordinates) to an
Excel file.

Upon startup, the client checks the shared cloud directory for the latest aggregated model. The client does not
participate in model training or parameter uploads. Its purpose is to apply the trained model to real-world scenarios,
making the results of edge-side training practically useful and thereby enhancing the overall effectiveness and
completeness of the system.
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Figure 5: Client Interface

4. Experiments and Result Analysis
4.1 Experimental Setup and Dataset

To evaluate the proposed federated object detection system, three edge devices were configured with a learning
rate of 0.001 (decaying to 0.0001), a batch size of 16, and 100 training epochs. A self-collected weed dataset was
used, consisting of approximately 1,800 raw images, which were manually filtered and augmented (e.g., flipping,
color jitter), resulting in 2,479 images in YOLO format.

The dataset was evenly divided into three subsets, each deployed on a separate device and further split into training,
testing, and validation sets. All data remained local to each device to ensure privacy.The subsets included images
with varying angles and clarity to simulate real-world conditions. This setup improves system realism and
demonstrates its effectiveness in practical, distributed deployment scenarios.
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4.2 Experimental Results and Analysis
4.2.1 Evaluation Metrics

All three edge devices utilize the YOLOv11 model to train on their respective datasets. To evaluate the system's
performance in object detection and recognition, this study focuses on the following key evaluation metrics:

(1)P Curve: The P curve shows the precision for each class, helping assess how well the model detects individual
object categories. It highlights which classes are accurately recognized and which may have more false positives.
As shown in Figure 6, the P curve reflects strong precision in weed detection, indicating the model effectively
identifies weeds with few incorrect predictions.
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Figure 6: P Curve

(2)R Curve: The R curve shows the recall for each class, indicating the system’s ability to identify weed instances
comprehensively. As shown in Figure 7, the system performs well in most cases but shows a slight drop in recall
for low-resolution or blurred images. Combined with the P curve, the R curve offers a more complete view of the
model’s detection performance by balancing accuracy and coverage.
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Figure 7: R Curve

(3)PR Curve: The PR curve shows the trade-off between precision and recall at various confidence thresholds. A
curve closer to the top-right corner indicates better performance. As shown in Figure 8, the system achieves an
average precision (AP) of 0.757 in weed detection, demonstrating balanced and reliable results. The PR curve
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offers a comprehensive view of both the accuracy and completeness of the model’s predictions.
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Figure 8: P-R Curve

4.2.2 Single-Device Training Results

To demonstrate the impact of federated learning on object detection performance, this study compared single-
device training with federated training using three edge devices. As shown in Figure 9, the single-device results
include key metrics such as loss, precision, recall, and mAP, serving as a baseline for assessing the improvements
achieved through federated learning in terms of accuracy, robustness, and generalization.
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Figure 9: Single-Device Training Results
4.2.3 Federated Learning Training Results

This experiment compared centralized training on a single device with federated training across three edge devices
for object detection. The results show that federated training outperformed centralized training in all key metrics:
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precision increased from 77.89% to 82.17%, recall from 72.25% to 73.56%, and mAP from 77.82% to 81.45%.
These improvements demonstrate that federated training effectively leverages data from multiple devices,
enhancing generalization and detection accuracy. The notable gains in precision and mAP highlight its advantage
in real-world, collaborative scenarios.

Table 1: Comparative Training Results

P/% R/% mAP/%
Centralized Training on a Single Device 77.89 72.25 77.82
Federated Training with Three Devices 82.17 73.56 81.45

4.3 System Detection Results

To verify the effectiveness of the federated learning system, inference was performed on validation set images.
The system detected weeds and output confidence scores, as shown in Figure 10. Detected weeds were marked
with red bounding boxes and labeled with confidence values. These results confirm the model’s ability to
accurately identify and localize targets, demonstrating the practical feasibility of the proposed approach.
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Figure 10: Weed Detection Results

5. Conclusion

This study presents a federated learning-based object detection system for weed recognition in smart agriculture,
featuring a three-tier cloud-edge-client architecture. By combining the YOLO algorithm with federated learning,
the system enables distributed training across multiple edge devices while preserving data privacy and supporting
cloud-based model aggregation and updates.

A key innovation is the introduction of a training evaluation and filtering mechanism, using mAP50 and class
count thresholds to ensure only high-quality models are aggregated. The system also includes a PyQt5-based GUI
on the client side, enabling intuitive inference on local images, videos, and real-time camera feeds, enhancing both
usability and practicality.

Despite the progress made, there are still several areas for future improvement:

1. Heterogeneous Device Adaptability: Currently, edge devices are based primarily on Jetson Nano. Future work
could extend support to a wider range of embedded platforms and operating systems.

2. Advanced Federated Optimization Algorithms: Techniques such as FedAvgM or FedProx could be introduced
to improve model convergence under non-IID (non-independent and identically distributed) data conditions.
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3. Model Compression and Acceleration: To accommodate resource-constrained devices, methods like model
pruning and quantization could be explored to further enhance inference efficiency.

4. Extension to More Complex Agricultural Scenarios: The system can be extended to tasks such as pest and
disease identification or fruit ripeness detection, increasing its generalizability and application value.

In summary, the proposed system not only introduces a novel paradigm for distributed training in agricultural
object detection but also provides a practical pathway for deploying federated learning in real-world applications,
demonstrating both research significance and practical potential.
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