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Abstract: Black-box transfer attacks represent a critical paradigm in adversarial machine learning, whereby adversarial
examples crafted against a surrogate (source) model are deployed to deceive unknown target models. This approach serves
as a vital tool for conducting security audits and enhancing the robustness of deep neural networks. A primary challenge,
however, lies in the tendency of iterative attack methods to overfit the specific characteristics of the source model, thereby
diminishing their cross-model transferability. To mitigate this issue, this paper proposes a novel Dynamic Step-length
Projection Attack method based on Attention Guidance (DSP-Attack). The core of our method is twofold. First, it introduces
a dynamic mechanism that adaptively adjusts the projection step size during the iterative perturbation generation process.
This is motivated by the observation that initial perturbations often possess higher transferability; the proposed strategy
thus prioritizes these early stages by employing a larger effective step size, while strategically curtailing potentially
overfitting and ineffective perturbations in later iterations. Second, the method incorporates an attention guidance
mechanism, derived from the source model's gradient-weighted class activation mapping, to focus the perturbation budget
on regions that the model deems most salient for its predictions. This ensures that the adversarial modifications are applied
to semantically meaningful and model-sensitive areas, thereby increasing the likelihood of the attack transferring to other
architectures. Comprehensive experiments on the ImageNet dataset demonstrate the superior efficacy of our approach. The
proposed DSP-Attack achieves significant performance improvements in transferability across a diverse set of target models,
including ResNet, VGG, and DenseNet architectures, outperforming several state-of-the-art baseline methods. These
findings affirm that jointly optimizing the attack trajectory via dynamic step-length control and spatial attention guidance is
a potent strategy for crafting highly transferable adversarial examples.

Keywords: Adversarial Attack, Black-Box Transferability, Dynamic Step-length, Attention Guidance, Model Security, Deep
Learning.

1. INTRODUCTION

In recent years, neural networks have achieved remarkable progress in image recognition and natural language
processing, yet they are also found to be vulnerable to adversarial attacks. By adding imperceptible perturbations
to inputs, adversarial attacks cause models to output incorrect predictions, exposing the security flaws of deep
learning and posing potential risks in critical applications such as autonomous driving and face recognition,
thereby highlighting the importance of studying adversarial attack and defense mechanisms. Current attack
methods, including gradient-based, input-transformation, and feature-interference strategies, show some
effectiveness but are often limited in black-box scenarios due to insufficient transferability. Enhancing the
cross-model transferability of adversarial examples is essential for understanding model vulnerabilities and
building robust systems. Li, Lin, and Zhang (2025) proposed a privacy-preserving framework combining federated
learning and differential privacy for personalized advertising, addressing critical data confidentiality concerns [1].
In the domain of urban design, Xu (2025) introduced CivicMorph, a generative modeling approach for public
space form development [2]. Concurrently, Tu (2025) presented SmartFITLab, an intelligent platform designed for
the execution and validation of 5G field interoperability testing, enhancing network infrastructure robustness [3].
For human resource technology, Xie and Liu (2025) developed EvalNet, a system utilizing sentiment analysis and
multimodal data fusion to process recruitment interviews [4]. Zhu (2025) explored language agents with
TaskComm, a task-oriented agent aimed at optimizing workflows for small businesses [5]. Further supporting
small enterprises, Zhang (2025) investigated reinforcement learning techniques for automated ad campaign
optimization in "Learning to Advertise" [6]. Hu (2025) contributed to 3D content creation for small and
medium-sized enterprises with "Learning to Animate," focusing on few-shot neural editors [7]. Developer tooling
for large language models was advanced by Zhang (2025) through InfraMLForge, enabling rapid LLM
development and scalable deployment [8]. In healthcare Al, Ding and Wu (2024) conducted a systematic review
on self-supervised learning applications for processing ECG and PPG biomedical signals [9]. Addressing
challenges in recommendation systems, Wang (2025) proposed a joint training method for propensity and
prediction models using targeted learning, specifically for data missing not at random (MNAR) scenarios [10]. Lin
(2025) addressed product management needs in Al systems by introducing a framework for digital experience
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observability [11]. Finally, foundational applications were reinforced by Chen (2023), who discussed the
utilization of data mining techniques within broader data analysis contexts [12].

2. DYNAMIC STEP-SIZE PROJECTION ATTACK METHOD BASED ON
ATTENTION GUIDANCE

2.1 Overall model structure

The proposed attention-guided dynamic step-size projection attack comprises two core modules: a dynamic
step-size adjustment module and an attention-guided region projection module.

In the dynamic step-size adjustment module, the method adaptively tunes the perturbation step size according to
the step-size ratio during the attack and the gradient trend of the loss function. A large step size is used at the
beginning to rapidly approach the decision boundary, then gradually reduced to stabilize the optimization. When
the gradient direction stabilizes, the step size is moderately enlarged to accelerate convergence; when the gradient
fluctuates violently, the step size is shrunk to prevent deviation from the optimal path. This mechanism enhances
the flexibility and stability of the attack.

In the attention-guided region projection module, Grad-CAM-generated attention heatmaps highlight the model’s
focus regions and are used to create region masks. These masks guide the redistribution of cropped redundant
perturbations into key areas, improving perturbation utilization and transferability. Compared with traditional
methods that directly discard cropped perturbations, this strategy reuses early, general-purpose perturbations,
effectively boosting cross-model attack success rates.

Finally, the two modules work in tandem to apply the optimized perturbations to the original image step by step,
generating adversarial examples that achieve high attack success rates across multiple target models. The
following subsections will detail the implementation of each module.

2.2 Dynamic Step-Size Adjustment Strategy

To fully exploit the more transferable perturbation information in the early attack phase and mitigate overfitting to
the source model in the later phase, this paper proposes a dynamic step-size adjustment strategy. Based on the
current iteration stage and the gradient trend of the loss function, the strategy adaptively adjusts the perturbation
step size: a large step size is used at the beginning to quickly approach the decision boundary, then progressively
reduced for fine-grained optimization. Simultaneously, the step size is dynamically tuned according to loss
variations, ensuring efficient convergence and enhancing both the aggressiveness and black-box transferability of
adversarial examples.

First, the step size is computed using a decay factor y € (0,1) to control the decay rate; the dynamic step-size
formula is defined as:

1- —
o =€ on Y (1)

where y'~1 denotes v raised to the t — 1 -th power, serving as the exponential decay term that ensures the step size

1-y
1—yT
normalization, the step size is allocated proportionally to the decay factor each round, ensuring that the total step
size over the entire attack equals the maximum perturbation €.

is a normalization coefficient. After

decreases with iteration count, € is the maximum perturbation, and

To enhance attack stability and adversarial transferability, this paper adaptively optimizes the step size according
to the gradient variation of the loss function and introduces multiple random perturbations into the gradient
computation to obtain a more stable gradient estimate and strengthen the attack’s generalization ability.
Specifically, assuming the current adversarial sample is X, , when computing the gradient, the paper first applies
several Gaussian perturbations 1; ~ V' (0, 62) to the input sample, then calculates the loss-function gradient for
each perturbed sample x; + 1; , and finally averages the gradients of all perturbed versions to obtain a more stable
gradient V., L(X; +1;, V) :
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where N is the number of Gaussian perturbation samples.

To improve attack efficiency, after obtaining a stable gradient direction, the paper dynamically adjusts the step size
a. A fixed step size can lead to instability: too large a step may overshoot the optimal direction, while too small a
step slows convergence. Therefore, the paper proposes an adaptive step-size strategy based on the gradient change
rate, allowing the step size to adjust dynamically with gradient information. Specifically, the step-size adjustment
is as follows:

r_ ot
Qe =7 (||gt-gt_1||2_1) €)
M Et—1+e

where a, is the step size computed by Equation (3), 1 controls the adjustment magnitude, (|8t — 8t-1ll, represents
the gradient change during the current attack, and € is a small constant (1010~8) to prevent division by zero. E_;
is the exponential moving average (EMA) of gradient changes, updated as follows:

Ec=2A-E; + (1 —=2) - lI8 — 8t-1ll, )

where A is the smoothing factor that controls the weighting between current and historical data; the smaller A is,
the more sensitive E; is to recent changes, while a larger A smooths the trend and relies more on historical data. Its
value is computed by:

y )

where T denotes the total number of iterations. The core idea of step-size adjustment is that when the gradient
changes sharply, the optimization direction is likely still unstable, so the step size should be reduced to prevent
overly rapid adversarial updates that could cause the attack to fail. When the gradient changes little, the attack
direction is relatively stable, and the step size can be increased to improve attack efficiency.

To prevent an excessive step size from degrading the attack, this method clips perturbations that exceed the
step-size range and retains them for processing in the next stage’s attention-guided region projection strategy,
projecting them onto the model’s most sensitive regions to further enhance the adversarial example’s attack
strength and transferability. Through this design, the dynamic step-size adjustment strategy enables the
perturbation magnitude in each iteration to be adaptively tuned, improving its transferability across different target
models. The gradual reduction of the step size effectively avoids overfitting, and while ensuring the adversarial
example remains effective, it minimizes unnecessary perturbations as much as possible.

2.3 Attention-Guided Region Projection Strategy

In the first step of this strategy, Grad-CAM is used to generate an attention map for the input sample. Grad-CAM
leverages gradient information from convolutional layers to help identify which image regions contribute most to
the model’s decision. Specifically, Grad-CAM computes a class activation map, performs a weighted summation,
and produces a heatmap that visualizes the activation level of different regions. This process is calculated as

follows:
1 ay¢
iy g
2l £ AL
LGrad—cam = ReLU(kaﬁ Ak) (6)

Here, A]-f]- is the k-th feature map of the last convolutional layer in CNN , wy, is the gradient-based weight for that

feature map, y© denotes the predicted score for class ¢, Z is a normalization factor, and ReLU(-) ensures only
regions with positive contributions to the target class are retained. The resulting Grad-CAM attention map reveals
how much the model attends to each part of the input image, with highlighted areas indicating the most sensitive
regions for the model’s decision.
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Based on the Grad-CAM attention map, this method further extracts the regions that most influence the model’s
decision—i.e., the key regions. These key regions typically correspond to the parts of the heatmap with the highest
activation values, reflecting the model’s most sensitive areas. By setting a threshold T, the most critical parts for
the decision are extracted to form a mask matrix M . This mask matrix M guides the projection of clipped
perturbations in each attack iteration. The mask matrix M is computed as:

1, GradCAM(,j) >

M(,j) = {o, GradCAM(j,j) <t ?

This mask matrix indicates whether each pixel in the image belongs to a key region. For every pixel position (i, j),
if its corresponding Grad-CAM value exceeds the threshold T, the position is deemed important, and the
corresponding entry in the mask matrix is set to 1; otherwise, the mask is 0.

In each attack iteration, this paper employs a mask matrix M to guide the perturbation application, so the
perturbation is influenced not only by the loss function but also dynamically adjusted according to attention
weights. During the dynamic projection phase, the excess perturbation clipped in the previous round is combined
with the current perturbation to intensify the attack on key regions. For mask entries equal to 1, gradient projection
fuses historical and current perturbations to apply strong perturbations; in non-critical regions (value 0) only small
perturbations are added, thereby improving overall attack effectiveness and transferability. Specifically, the
method reuses the excess perturbation 8..es clipped in the previous iteration, dynamically projecting it onto the
most sensitive regions and updating it together with the current perturbation. The formula is as follows:

at(x) = Clipe (O({ ’ Sign(gt) + Iy (B : 8excess(x))) (8)

Here, 6,(x) is the perturbation at round t, af is the current step size computed via Equation (3), g; is the gradient
information calculated by Equation (2), M is the mask matrix marking key regions in the attention map,  is a
dynamically adjusted factor controlling the influence of the previous round’s clipped perturbation, and §¢ycess (X)
is the excess perturbation clipped in the previous iteration. The excess perturbation 8yess(X) is adjusted according
to B and the mask matrix M , ensuring it is applied only to regions most sensitive to model decisions and has no
effect on non-critical regions. [Ty denotes projecting the excess perturbation into the constraint mask matrix M .
Cli p, clips the perturbation so each pixel value stays within the maximum perturbation bound, while temporarily
storing the clipped excess for use in the next iteration.

Table 1: Attack success rates (%) against normally trained models

Model Attack Inc MC | JncRes —v2 | Res-152 | Res-50 | Res-101 | AVG
methods —v3 —v4

MI 100.0* | 511 46.9 39.3 | 466 | 416 | 543

s 100.0* | 643 59.6 489 | 570 | 524 | 638

VMI 100.0* | 745 70.7 63.3 | 680 | 625 | 732

ey 3 Admix | 100.0* | 786 73.2 680 | 743 | 692 | 772

PI 100.0* | 521 34.7 385 | 442 | 409 | 517

SI-NI 100.0% | 76.3 75.1 67.6 | 730 | 698 | 77.0

GE-AdvGAN | 100.0* | 90.9 75.1 88.0 | 740 | 699 | 83.0

Ours 100.0* | 814 79.6 751 | 746 | 702 | 80.2

MI 61.6 | 100.0* |  45.3 24 | 452 | 428 | 562

s 719 | 100.0* 55.6 494 | 556 | 488 | 636

VMI 83.0 | 100.0* 76.1 688 | 714 | 68.2 | 779

e 4 Admix 884 | 100.0* 82.9 778 | 796 | 759 | 84

PI 526 | 100.0* | 307 368 | 407 | 370 | 49.6

SI-NI 85.5 | 99.9* 79.1 728 | 752 | 73.0 | 809

GE-AdVGAN | 884 | 100.0* | 69.1 814 | 814 | 80.3 | 834

Ours 90.1_| 100.0* 85.6 82.1 825 | 811 | 869

MI 614 | 539 99.3* 454 | 502 | 450 | 59

IncRe sz sI 759 | 6638 98.3* 555 | 619 | 579 | 69.4

VMI 80.7 | 764 99.3* 657 | 69.3 | 68.2 | 766

Admix 90.9 | 888 99.5* 834 | 845 | 842 | 88.6
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PI 53.8 48.1 98.6* 38.1 40.7 39.1 53.1
SI-NI 87.8 83.1 99. 9* 75.7 78.5 77.1 83.7
GE-AdvGAN 87.4 83.4 98.9* 80.3 79.2 79.0 84.7
Ours 91.9 90.0 99. 9* 86.6 85.4 85.9 89.9

Superscript "*" indicates white-box attacks.
3. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the performance of the proposed method against normally trained models, Inc-v3, Inc-v4, and
IncRes-v2 are selected as white-box models to generate adversarial examples. These adversarial examples are then
used to attack the same models and two additional black-box models: Res-50 and Res-101. As shown in Table 3-1,
compared with seven mainstream adversarial attack methods, the proposed method significantly improves
black-box transferability without reducing the attack success rate on white-box models. For example, when Inc-v3
is used as the white-box model to generate adversarial examples and attack other black-box models, the proposed
method raises the average attack success rate from 51.7% to 80.2% compared with the classic PI-FGSM algorithm.
Compared with the advanced methods Admix and VMI-FGSM, the average attack success rate is increased by 3%
and 7% , respectively. Moreover, compared with the recent method GE-AdvGAN, the proposed method achieves
higher average attack success rates when Inc-v4 and IncRes-v2 are used as white-box models.

4. CONCLUSION

With the widespread adoption of deep neural networks, their vulnerability to adversarial examples has drawn
significant attention. Existing attack methods often struggle to balance success rate and transferability, limiting
black-box attack effectiveness. To address this, the paper proposes an attention-guided dynamic step-size
projected attack method from the perspective of gradient optimization. By employing a dynamic step-size strategy,
the method accelerates early perturbation convergence to the decision boundary and reduces later overfitting,
while leveraging attention mechanisms to project highly transferable perturbations onto key regions. Experimental
results demonstrate significant advantages in improving transferability, attack success rate, and stealth.
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