

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 7, 2025Volume 4 Issue 8, 2025

Towards a Modular Paradigm: Developing and

Deploying Artificial Intelligence in Embedded

Software Systems

Kangming Xu

Hangzhou Anheng Information Technology Co., Ltd. Zhejiang Hangzhou 310000

Abstract: The rapid advancement of artificial intelligence (AI) has ushered in a new era of innovation for embedded

systems, leading to the widespread deployment of embedded AI software across diverse domains such as smart homes and

industrial automation. This proliferation, however, concurrently imposes stringent demands on software flexibility to

accommodate evolving functionalities, heterogeneous hardware, and dynamic operational environments. In this context,

modular design has emerged as a pivotal architectural paradigm. Modular embedded AI software effectively addresses these

challenges by decomposing complex, monolithic systems into a cohesive set of independent, self-contained, and highly

cohesive modules. This decomposition significantly enhances development efficiency by enabling parallel development,

simplifying debugging, and facilitating component reuse. Furthermore, it substantially improves system maintainability,

allowing for targeted updates, bug fixes, or algorithm replacements within specific modules without necessitating a full

system overhaul. This inherent adaptability empowers the software to respond more effectively to rapidly changing market

demands and technological upgrades. Crucially, a well-defined modular architecture provides a standardized framework

for the efficient integration and deployment of diverse AI algorithms, allowing developers to plug in, test, and compare

different models for perception, decision-making, or control with minimal friction. This paper elaborates on the core

principles, architectural patterns, and implementation methodologies for constructing modular embedded AI systems. It

argues that the strategic adoption of modularity is not merely a software engineering best practice but a critical enabler for

building robust, scalable, and future-proof intelligent embedded systems capable of sustaining the next wave of innovation

at the intersection of AI and edge computing.

Keywords: Embedded Artificial Intelligence, Modular Software Design, Software Flexibility, Development Efficiency,

System Maintainability, AI Algorithm Integration, Smart Systems.

1. INTRODUCTION

With the rapid development of artificial intelligence technology, embedded systems are being applied in an

ever-wider range of fields, and modular design has become key to improving software development efficiency.

This paper analyzes the application value of modular embedded AI software and then elaborates on its

development model, hoping to provide some reference for research in the field of AI development.

2. APPLICATION VALUE OF MODULAR EMBEDDED ARTIFICIAL

INTELLIGENCE SOFTWARE

Modular design makes the software development process more efficient. By decomposing complex systems into

independent functional modules, developers can work in parallel, shortening the development cycle, while the

reusability of modules also greatly reduces development costs. The characteristics of embedded systems ensure

that the software can run stably in resource-constrained environments, meeting users’ diverse needs. The

introduction of artificial intelligence technology further enhances the intelligence level of the software, enabling it

to handle complex task decisions and thus play a greater role in various application scenarios. In the field of social

production, the application of modular embedded AI software has significantly improved production management

levels. For example, in industrial automation, intelligent control systems designed with modularity can quickly

adapt to different production needs, enabling flexible adjustment of production lines and thereby improving

product quality. In agriculture, intelligent embedded systems can monitor crop growth environments in real time

and automatically adjust irrigation and fertilization, increasing agricultural output. In the medical field, modular

embedded AI software is widely used in the intelligent upgrading of medical devices, improving the timeliness of

diagnosis and treatment and providing better medical services for patients. In daily life, the application of modular

embedded AI software has also brought many conveniences. Smart home systems, through modular design, allow

various smart devices to be seamlessly integrated, enabling users to control home lighting devices through a

unified platform and enhancing living comfort. In transportation, intelligent transportation systems use embedded

6

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 7, 2025Volume 4 Issue 8, 2025

AI technology to achieve real-time monitoring of traffic flow, reduce the incidence of traffic accidents, and

improve travel efficiency. In addition, smart wearable devices provide strong support for people’s health

management by monitoring body indicators in real time, helping users detect health issues promptly and take

corresponding measures. Yu et al. (2025) pioneered automatic summarization using Transformer and

Pointer-Generator networks, achieving efficient information condensation [1]. Concurrently, Chen (2023)

established foundational methodologies for applying data mining techniques to enhance analytical workflows [2].

For AI system management, Lin (2025) proposed an observability framework enabling product managers to

monitor digital experiences in AI-enhanced environments [3]. Financial technology innovations include Zheng et

al. (2025)'s FinGPT-Agent, which employs hierarchical attention and task-adaptive optimization for multimodal

research report generation [4]. Industrial applications show substantial progress, as Xie and Chen (2025)

developed Maestro, a multi-agent system optimizing task recognition in manufacturing pipelines [5]. In digital

advertising, Hu (2025) introduced UnrealAdBlend, leveraging game engine pipelines for immersive 3D ad content

creation [6]. Cross-platform recommendation systems evolved through Li, Wang, and Lin (2025)'s graph neural

network-enhanced sequential method for ad campaigns [7]. Fundamental AI capabilities are advanced by Wang

and Zhao (2024), whose hybrid architecture improves abstract reasoning for artificial general intelligence [8].

Finally, Lei et al. (2025) addressed domain adaptation challenges through a teacher-student framework

incorporating data augmentation for short-context classification [9].

3. DEVELOPMENT OF MODULAR EMBEDDED AI SOFTWARE

3.1 Establishing the Software Architecture

Before development begins, developers must conduct an in-depth analysis and planning of the software’s specific

application scenarios to ensure it meets operational requirements and offers strong adaptability. At the application

level, modular embedded AI software must exhibit high stability, low power consumption, and economical

production costs—traits that underpin large-scale deployment. Stability is a core requirement for embedded

systems, especially in critical fields such as industrial control and medical devices, where any failure can have

severe consequences. Therefore, during software architecture design, developers must fully consider system fault

tolerance to guarantee stable operation in complex environments. Low power consumption is another key

characteristic, particularly for mobile or IoT devices, where limited battery capacity demands that software

minimize energy use while maintaining performance; optimizing algorithms can effectively reduce power draw

and extend device life. Moreover, low production cost is essential for mass adoption; modular design leverages

proven components, cutting development expenses and shortening time-to-market.

At the development level, the design of modular embedded AI software should focus on the interaction between

the controlled object and the embedded smart terminal. The controlled object is the system’s core target, and its

behavioral data form the basis for software functionality. AI sensors are tasked with real-time acquisition and

processing of signals from the controlled object and transmitting this data to the control terminal; hence, sensor

performance directly affects system responsiveness. When selecting sensors, developers must weigh all relevant

capabilities. The control terminal, acting as the embedded system’s “brain,” analyzes sensor data and generates

control commands according to preset algorithms [2]. In a modular design, the terminal’s functions are split into

independent modules—such as data preprocessing, decision-making, and execution—enhancing flexibility and

easing future expansion and optimization.

3.2 Intelligent Exchange of Network Data Information

In terms of communication design, the software primarily adopts a remote information-export model for data

transmission. This approach not only ensures high-efficiency data transfer but also facilitates subsequent

parameter modifications. By designing a Common Gateway Interface (CGI), developers can achieve intelligent

processing of network data, laying the groundwork for system scalability. Acting as a bridge between embedded

devices and external networks, the CGI effectively handles information from diverse data sources and converts it

into a format the system can recognize for further analysis [3]. In practice, the CGI-based design enables personnel

to efficiently complete data acquisition, transmission, and computation tasks, significantly improving

information-exchange efficiency. For example, in industrial automation, embedded systems exchange data with

sensors via the CGI, collect real-time production-line data, and apply intelligent algorithms for analysis and

optimization, thereby enhancing production quality. In smart homes, the CGI allows users to remotely control

household devices—such as adjusting indoor temperature or monitoring home security—via mobile devices,

greatly increasing convenience. In medical equipment, the CGI enables doctors to monitor patients’ health

7

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 7, 2025Volume 4 Issue 8, 2025

remotely and adjust treatment plans based on real-time data, improving the precision of medical services. At the

technical-implementation level, the modular embedded AI software employs advanced communication

technologies to optimize data exchange. By applying ATOP pulse technology, the system can automatically cancel

the MODEM’s transmission acknowledgment upon receiving a specific command (e.g., “ATSO=N”) and direct

the data conditioner to hang up. This technology not only boosts data-transmission reliability but also reduces

unnecessary communication overhead, thereby optimizing overall system performance. The use of ATOP pulse

technology further allows the system to adapt to complex network environments, ensuring efficient data exchange

even under unstable signals or network congestion.

3.3 Development of Source-Code Porting

To achieve efficient source-code porting, developers must devise a sound migration strategy based on the specific

requirements of the software’s core source code and ensure that the ported code runs stably in the target

environment. They need to perform a comprehensive analysis and evaluation of the existing AI software code,

understanding its structural and functional modules as well as their dependencies. This step not only helps identify

potential compatibility issues but also provides a basis for subsequent code optimization. Through in-depth code

analysis, developers can determine which parts need modification or refactoring to adapt to the characteristics of

the target hardware platform. During source-code porting, developers should manage the source code in a textual

manner; textual source-code management not only facilitates version control but also effectively reduces errors

and conflicts that may arise during porting [4]. By using a version-control system (such as Git), developers can

track the history of code changes and quickly roll back to a previous stable version when problems occur. In

addition, textual source-code management streamlines automated testing, enabling developers to detect and fix

issues promptly during porting, thereby improving code quality. To ensure the effectiveness of source-code

porting, developers also need to establish an effective connection between the software and the system’s terminal

hardware. This process typically involves implementing a Hardware Abstraction Layer (HAL). Acting as a bridge

between software and hardware, the HAL masks differences in underlying hardware and provides a uniform

interface for upper-layer software. Through the HAL, developers can decouple the software’s core logic from

specific hardware implementations, thereby enhancing software portability. For example, in embedded systems,

the HAL can encapsulate driver code for different processor models, memory types, and peripherals, allowing

upper-layer software to perform operations by calling a unified interface without concerning itself with hardware

specifics.

3.4 Effective Control of Agents

From the perspective of design intent, the ultimate goal of modular embedded AI software is to achieve intelligent

system management through the rational control of agents. An agent, as an intelligent entity within the system, is

responsible for perceiving the environment, processing information, and executing corresponding

decision-making actions. To enable effective management and control of agents, developers must design a central

control layer that, by employing the IPC0 (Inter-Process Communication) mechanism, can efficiently receive and

process information from devices such as encoders, gyroscopes, and inclinometers, thereby providing the system

with real-time status data. This design not only satisfies the system’s need for real-time information but also lays a

solid foundation for implementing intelligent programs such as control and tracking. During concrete

implementation, the central control layer must fully account for system real-time requirements; through the IPC0

mechanism, it can exchange data efficiently with each hardware device to ensure timely information transmission

and processing. For example, in a robot control system, position data from encoders, attitude data from gyroscopes,

and tilt angles from inclinometers must all be integrated and analyzed by the central control layer to generate

precise control commands [5]. In addition, the central control layer must possess a certain level of fault tolerance to

cope with possible hardware failures or data anomalies, ensuring stable system operation in complex

environments.

To further meet A/D data-collection needs, developers must also build composite agents to manage low-level

hardware drivers effectively. A composite agent comprises multiple sub-agents, each handling a specific task or

data type. In an intelligent transportation system, for example, one sub-agent may collect traffic-flow data, another

may process vehicle-position data, and a third may analyze environmental-monitoring data. Through this division

of labor, the composite agent efficiently completes complex data-collection and processing tasks, providing

comprehensive data support for intelligent system decisions. Moreover, the composite-agent design improves

system scalability: developers can add new sub-agents as needed without refactoring the entire system. In

environmental perception, modular embedded AI software leverages compression techniques to process real-time

8

Journal of Theory and Practice of Engineering Science ISSN: 2790-1513
International Journal of Advance in Applied Science Research ISSN: 3065-9965

www.h-tsp.com

Volume 4 Issue 7, 2025Volume 4 Issue 8, 2025

environmental information efficiently. Environmental perception is the foundation for an agent’s intelligent

decision-making; by sensing and analyzing its surroundings, the agent generates control commands and executes

corresponding actions. In an autonomous-driving system, for instance, the agent uses sensors to perceive road

conditions, traffic signals, and the positions of surrounding vehicles in real time, then applies compression

techniques to process this information efficiently, generate driving decisions, and control the vehicle. Compression

reduces data storage and transmission overhead while improving system responsiveness. With machine-learning

and deep-learning algorithms, the agent can also extract useful features from vast environmental data and produce

more accurate, intelligent decisions.

4. CONCLUSION

In summary, modular design significantly improves the development efficiency of embedded AI software and

holds great value in today’s rapidly evolving technological landscape. As AI technology continues to advance, the

application and development of modular embedded AI software will inevitably play a key role in innovating

Internet-based remote-control technologies, effectively mitigating response deficiencies caused by various

influencing factors in the control loop. While continuously elevating system intelligence, it will also better meet

ever-growing market demands.

REFERENCES

[1] Yu, Z., Sun, N., Wu, S., & Wang, Y. (2025, March). Research on Automatic Text Summarization Using

Transformer and Pointer-Generator Networks. In 2025 4th International Symposium on Computer

Applications and Information Technology (ISCAIT) (pp. 1601-1604). IEEE.

[2] Chen, Rensi. "The application of data mining in data analysis." International Conference on Mathematics,

Modeling, and Computer Science (MMCS2022). Vol. 12625. SPIE, 2023.

[3] Lin, Tingting. "Digital Experience Observability in AI-Enhanced Systems: A Framework for Product

Managers." ResearchGate, Mar (2025).

[4] Zheng, Haoran, et al. "FinGPT-Agent: An Advanced Framework for Multimodal Research Report

Generation with Task-Adaptive Optimization and Hierarchical Attention." (2025).

[5] Xie, Minhui, and Shujian Chen. "Maestro: Multi-Agent Enhanced System for Task Recognition and

Optimization in Manufacturing Lines." Authorea Preprints (2025).

[6] Hu, Xiao. "UnrealAdBlend: Immersive 3D Ad Content Creation via Game Engine Pipelines." (2025).

[7] Li, X., Wang, X., & Lin, Y. (2025). Graph Neural Network Enhanced Sequential Recommendation Method

for Cross-Platform Ad Campaign. arXiv preprint arXiv:2507.08959.

[8] Wang, Yang, and Zhejun Zhao. "Advancing Abstract Reasoning in Artificial General Intelligence with a

Hybrid Multi-Component Architecture." 2024 4th International Symposium on Artificial Intelligence and

Intelligent Manufacturing (AIIM). IEEE, 2024.

[9] Lei, Fu, et al. "Teacher-Student Framework for Short-Context Classification with Domain Adaptation and

Data Augmentation." (2025).

9

