International Journal of Advance in Applied Science Research ISSN: 3065-9965

Message Publishing System Based on MFC

Yulin Yang

School of Computer and Software, Jincheng College of Sichuan University, Chengdu 611731, Sichuan, China

Abstract: Messages are a primary vehicle for quickly obtaining fresh external information in daily life. Their main
difference from what is commonly called news is their conciseness; they can be regarded as a type of news and therefore
share news’s timeliness. With the acceleration of modern life, timely sharing of the latest messages has become an
important need—rapid message sharing in companies, schools, and other settings is also crucial. This paper introduces a
message publishing system designed and implemented with MFC, discusses how its main functions are realized via MFC,
and explains how JSON is used as an intermediary for data exchange.

Keywords: MFC; Message publishing system; JSON.
1. KEY TECHNOLOGIES USED IN THE SOFTWARE

Among object-oriented programming languages, C++ is designed based on the C language. Although it is more
complex compared to other languages, it offers the flexibility to accomplish almost everything other languages can
do. For larger-scale software systems, it does not rely more frequently on the standard library.

MFC is a class library provided by the Visual Studio programming environment. It encapsulates many Windows
functions and features into controls for our use, allowing us to program with various controls in a dialog-based
manner. In this type of program design, the main task is the proper use of these controls. For the same application,
the quality of control usage determines the difficulty of development and the readability of the program. Therefore,
before using any control, one should carefully consider whether it is suitable for the intended purpose. In natural
language processing, Yang et al. (2025) [1] proposed a novel GAN-based extractive text summarization approach
combining transductive and reinforcement learning, while Xie and Chen (2025) [2] developed CoreViz, a
context-aware reasoning engine for business intelligence dashboards. For system diagnostics, Zhu (2025) [3]
introduced TraceLM for temporal root-cause analysis using contextual embedding models, and Zhang (2025) [4]
presented CrossPlatformStack to enhance service availability across Meta platforms. In creative applications, Hu
(2025) [5] created GenPlayAds for procedural generation of interactive 3D advertisements. Computer vision
research includes Zheng et al. (2025) [6]'s DiffMesh framework for video-based human mesh recovery and Peng et
al. (2024) [7]'s work on domain adaptation for human pose estimation. Healthcare analytics has seen contributions
from Zhang et al. (2025) [8] in biomechanical anomaly detection and Chen et al. (2024) [9]'s Bimcv-R dataset for
medical image retrieval. Additional NLP research by Yu et al. (2025) [10] explored transformer-based text
summarization. Economic applications include Bi and Lian (2025) [11]'s study on Al in digital finance exports and
Pal et al. (2025) [12]'s Al credit risk assessment system. Finally, Chen et al. (2023) [13] advanced medical imaging
with self-supervised neuron segmentation.

JSON is a data-exchange format that is concise, clear, and highly readable, making it suitable for exchanging small
amounts of data. In this application, JSON is primarily used to unify the data format for sending and receiving
across various interfaces.

2. MAIN FUNCTIONALITY DESCRIPTION

Upon launching the software, the user first arrives at the main interface, where they can choose to log in or register.
The home page also provides buttons for browsing messages by category and for composing new messages.
Before logging in, users can still browse messages in each category and read the comments beneath them, but they
cannot use the comment feature, nor can they edit or publish any messages. In the message directory under each
category, users can see the publication time of each message, and messages are listed in chronological order. After
logging in, users can compose and publish messages, enter the comment section under any message’s detail page
to reply, and, when viewing their own message’s detail page, delete or modify that message. Likewise, they can
delete or modify their own replies. Logged-in users can also access a personal information page to update their
details at any time.

Volume 4 Issue 6, 2025
www.h-tsp.com
71

International Journal of Advance in Applied Science Research ISSN: 3065-9965

3. ENVIRONMENT PREPARATION AND CONFIGURATION

First, the server can be deployed on a virtual machine to isolate it from the client; alternatively, you can host it on
a cloud server according to your needs to simulate a real C/S architecture. The advantages of this architecture
mainly include: (1) high accuracy, (2) strong security, (3) good interactivity, and (4) fast interaction speed, making
it a commonly used design today [3]. When starting the environment setup, first download and install the
WampServer on the server side. After installation, the first launch may fail because the port is occupied; simply
change the port number. In addition, if you want to access the configured WampServer from another network, you
will be told that you lack permission—this is because WampServer by default only allows access from the local
host. To change this, open the Apache folder, edit the httpd.conf file, delete “Deny from all”, and change "Allow
from 127.0.0.1" to "Allow from all" [4]. Next, create the required tables in the SQL database according to the
different needs that arise during software design. Finally, follow an online tutorial to configure the C++ server;
inside its configuration package there is usually a sgl.json file. In sgl.json you must write stored procedures based
on the tables you created, their key fields, and the database operation functions. When everything is ready, the
server side effectively uses three servers: a web server, a C++ server, and a database server. The web server
receives requests from the client and communicates with the C++ server. The C server receives data and
requirements from the web server, runs business code, and performs various operations on the SQL tables. The
database server executes the previously prepared functions according to the requests from the C++ server, operates
on the table fields, and returns the data. After the environment is configured, use the JSON Tools utility to test
whether database operations succeed. JSON is used as the intermediary for data exchange; all operation data and
commands are converted into JSON format, acting like a unified interface. Later, even if additional client software
is added, it only needs to convert its operation data into JSON format. If no exception codes or other errors are
returned after testing, the basic environment setup is considered complete.

4. IMPLEMENTATION OF SPECIFIC FUNCTIONS
4.1 Password Encryption and JSON Data Exchange

For password encryption, MD5 can be used. MD5 employs a hash algorithm whose clever feature is irreversibility:
even if someone obtains the encrypted data, they cannot derive the original password. In the system’s login module,
passwords are encrypted with MD5 before being stored in the database, enhancing system security [5].

Since various operations on the data require converting it to JSON format first, writing your own conversion
functions is cumbersome; you can use an existing JSON library. The data packaging code is as follows:

Json:: Value root;

Json:: Value item;
item["ID_Card"] = id_card,;
item["RealName"] = realname;
item["ID"] = id;
item["Password"] = password;
item["E_mail"] = e_mail;
item["NickName"] = nickname;
root["reqKey"] = "Register";
root["input"] = item;
std::string Itc = root.toStyledString();
std::string itc = "jsons=" + Itc;
itc = string_To_UTF8(itc);

After steps like the above, the datato be exchanged becomes JSON format, which is then sent to the corresponding
server address via an HTTP tool:

CMyHittpTools myhttp;
autos = myhttp.OnOpenHttp(addr, out);

Finally, the server interacts with the database, which returns the requested data; the client then retrieves the
requested data from the returned JSON using the following code:

Volume 4 Issue 6, 2025
www.h-tsp.com
72

International Journal of Advance in Applied Science Research ISSN: 3065-9965

get <1>(s) = UTF8_To_string (get <1>(s));
std:: string strVValue = get <1>(s);

This achieves data exchange between the client and the database.
4.2 Login and Registration Module

When implementing this part with MFC, you can place Edit Control widgets on the login and registration
interfaces to receive user input such as username and password, and then use the following code to retrieve the
information entered in the control:

CString ID;
GetDlgltem (IDC_EDIT1) -> GetWindowText(ID);

After obtaining the requested information, it becomes apparent that the data type retrieved is CString, which is not
very convenient for subsequent operations. Therefore, the CString data needs to be converted into the more
manageable char * type; the conversion code is as follows:

char*id == new char[50];
strepy(id, (char*)_bstr_t(1D));

This allows subsequent operations to proceed. If registration is required, the obtained user information must also
be validated. This step is executed after the user clicks the Confirm Registration button. In MFC, you can add a
response event to a Button Control, treating the button click as triggering a function. In fact, most other controls
can also have response functions added; simply double-click the control in the MFC window interface to create
and jump directly to its response function. After adding the registration button’s response function, you can check
the username or password to see whether they meet length and character requirements or whether any required

fields are empty. This step can be implemented directly with C++ for the checks, or via regular expressions—the
former is simpler, the latter more precise. Once the format is verified, encrypt the password with MD5, then
package the validated registration information into JSON and send the operation to the server. Using functions in
the SQL database, compare the registration information against existing user data; if no identical account exists,
registration succeeds.

The design of the login function is similar to that of registration. First, an Edit Control is used to capture the user’s
input, after which the entered data are validated for any illegality. Finally, the provided information is checked
against the existing records in the database; if both the username and password exist and belong to the same user,
the login succeeds. During verification, note that the password stored in the user data is MD5-encrypted, so the
password entered by the user must also be MD5-encrypted before comparison.

4.3 Message Catalog Module

Message categorization is very easy to implement: just add the corresponding category selection buttons on the
software’s home page and attach the appropriate response function to each button. The message directory interface
is designed so that all categories share one interface; in the response function for each category’s button, simply
retrieve the corresponding messages from the database, pass them to the message interface, and set a flag to “tell”
the message directory which category was selected. This achieves categorized browsing while eliminating a lot of
redundant code.

In the message catalog interface, you can use the List Control, which is convenient for displaying and adding list
items. Before displaying the news list retrieved from the database, the List Control is divided into multiple
columns; the code for one of the columns is as follows:

m_newslist.InsertColumn(1,_T("News Title"), LVCFMT_LEFT, 100);
m_newslist.SetColumnWidth(1, wid * 3/ 5);

Column number 1 is set to three-fifths of the entire list by this line of code. Here, wid represents the total width of
the list control, which you need to obtain in advance.

Volume 4 Issue 6, 2025
www.h-tsp.com
73

International Journal of Advance in Applied Science Research ISSN: 3065-9965

Next, insert the obtained message list into the list:

m_newslist.SetltemText(m, 1, Ntitle);

Finally, refresh the interface to see the message list displayed in the List Control.
4.4 Message Detail Page and Comment Module

In the message directory list interface, you can use a CPoint variable to get the mouse position and add a click
event to open the message detail page. In the detail page, multiple Edit Control controls can be set to read-only to
display the publisher’s information and the message content. Read-only controls do not allow user input like
normal edit boxes; after setting the read-only attribute, the edit box can only be used to display data.

In the message detail page interface, set a Button Control whose response function opens the comment interface. In

the comment interface, you can use a group of Edit Control controls N to display comment information obtained
from the database. If the last few comments on a page are empty, you can use the ShowWindow() function to hide
the comment boxes, making the interface cleaner. The specific usage is as follows:

CButton m_udrl;
m_udrl.ShowWindow(FALSE);

This statement makes the control associated with variable m_udr1 invisible.

Another feature here is determining whether the message or comment was posted by the logged-in user. If so, the
user is allowed to modify or delete the message and comments. Initially, the Disabled property of the modify and
delete buttons is set to false, so the buttons are unusable at first. When entering the news, compare the logged-in
user’s ID with the message publisher’s ID. If they match, use the EnableWindow() function to enable the button.
The specific code is as follows:

m_updatenew.EnableWindow(TRUE);
This allows the logged-in user to modify or delete their own messages and comments via these buttons.
4.5 Posting Messages and Modifying Personal Information Module

The message posting feature is relatively simple in the system. First, set Edit Control controls to get the title and
content of the message entered by the user. Then, set the send button’s response function to package this data into
JSON format and send it to the server. Finally, the server stores the data in the corresponding table in the database.
Since the requirement mentions recording the posting time of each message, the SQL side will use a function to get
the current time and store it together with the received data.

Modifying personal information is similar: package all modified information into JSON data to update it. The
tricky part is what to do if some data is left blank because the user doesn’t want to change it. The solution is to set
an initial value for the sent data, using the logged-in user’s current information as the default.

5. CONCLUSION

This paper describes how to use €+ and MFC to implement the various functions of a message publishing
platform, focusing on the use of several common MFC controls and the roles of their properties. It also briefly
outlines the entire design process of the C/S framework and its essential components, as well as how and why the
JSON data format is employed for data exchange.

REFERENCES

[1] Yang, Jing, et al. "A generative adversarial network-based extractive text summarization using transductive
and reinforcement learning." IEEE Access (2025).

Volume 4 Issue 6, 2025
www.h-tsp.com
74

International Journal of Advance in Applied Science Research ISSN: 3065-9965

[2]
[3]
[4]

[5]
[6]

[7]
8]
[9]

Xie, Minhui, and Shujian Chen. "CoreViz: Context-Aware Reasoning and Visualization Engine for Business
Intelligence Dashboards." Authorea Preprints (2025).

Zhu, Bingxin. "TraceLM: Temporal Root-Cause Analysis with Contextual Embedding Language Models."
(2025).

Zhang, Yuhan. "CrossPlatformStack: Enabling High Availability and Safe Deployment for Products Across
Meta Services." (2025).

Hu, Xiao. "GenPlayAds: Procedural Playable 3D Ad Creation via Generative Model." (2025).

Zheng, Ce, et al. "Diffmesh: A motion-aware diffusion framework for human mesh recovery from videos."
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2025.

Peng, Qucheng, et al. "Exploiting Aggregation and Segregation of Representations for Domain Adaptive
Human Pose Estimation." arXiv preprint arXiv:2412.20538 (2024).

Zhang, Shengyuan, et al. "Research on machine learning-based anomaly detection techniques in
biomechanical big data environments." Molecular & Cellular Biomechanics 22.3 (2025): 669-669.

Chen, Yinda, et al. "Bimcv-r: A landmark dataset for 3d ct text-image retrieval." International Conference on
Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.

[10] Yu, Z., Sun, N., Wu, S., & Wang, Y. (2025, March). Research on Automatic Text Summarization Using

Transformer and Pointer-Generator Networks. In 2025 4th International Symposium on Computer
Applications and Information Technology (ISCAIT) (pp. 1601-1604). IEEE.

[11] Bi, Shuochen, and Yufan Lian. "Research on the Export Trade Path Mechanism of Digital Finance and

High-tech Industries under Al Technology." (2025).

[12] Pal, P. et al. 2025. Al-Based Credit Risk Assessment and Intelligent Matching Mechanism in Supply Chain

Finance. Journal of Theory and Practice in Economics and Management. 2, 3 (May 2025), 1-9.

[13] Chen, Yinda, et al. "Self-supervised neuron segmentation with multi-agent reinforcement learning." arXiv

preprint arXiv:2310.04148 (2023).

Volume 4 Issue 6, 2025
www.h-tsp.com
75

